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Abstract  

The aim of this review is to describe many approaches 
to modulated crystals and quasicrystals developed in 
two decades after the introduction of higher-dimensional 
crystallography in a unified way. Much attention is 
focused on higher-dimensional crystallography of quasi- 
crystals, which is under development. After discussions 
on symmetries of modulated crystals and methods of 
their structure analysis, many subjects on the analysis 
of quasicrystals are discussed, which include meth- 
ods of generating quasiperiodic tilings, their diffraction 
patterns, similarity transformations, indexing problems, 
point density of quasicrystals, phason distortion, rela- 
tions between quasicrystals and their crystalline approxi- 
mants, model constructions, Patterson, refinement and 
maximum-entropy methods for quasicrystals, and super- 
structures in quasicrystals. In particular, the theories 
for octagonal, decagonal, dodecagonal and icosahedral 
quasicrystals are given in detail. 

1. Introduction 

Two decades have passed since the introduction 
of higher-dimensiooal crystallography for modulated 
crystals (modulated structures) and a decade since the 
discovery of quasicrystals. There exist three kinds of 
quasiperiodic structures to which higher-dimensional 
crystallography is applicable. The modulated structure 
is the oldest one, which was found in 1929 by 
Dehlinger. The so-called composite crystals were 
discovered in the 1970's (Makovicky & Hyde, 1981) and 
quasicrystals were found in 1984 (Shechtman, Blech, 
Gratias & Cahn, 1984). In particular, the discovery 
of quasicrystals extended the applicability of higher- 
dimensional space groups to non-crystallographic cases. 

After obtaining his Master's degree at Tokyo Institute of Tech- 
nology, Dr A. Yamamoto obtained his doctorate at Kyoto Uni- 
versity by studies of modulated structure analyses based on 
superspace groups. Since then, he has worked on methods 
of structure analyses of modulated structures and composite 
crystals, and has more recently been developing the method of 
structure analysis of quasicrystals based on a description in 
higher-dimensional space. 
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The first quasicrystal found forced us to reconsider the 
concept of crystals. A quasicrystal shows no translational 
periodicity along any direction in three-dimensional 
(3D) space but has Bragg spots in the diffraction 
pattern. Furthermore, the rotational symmetry is non- 
crystallographic, including fivefold axes. The basis for 
understanding such a peculiar structure lies in higher- 
dimensional crystallography, which was introduced for 
incommensurately modulated structures. 

In 1974, de Wolff proposed the description of a 
modulated structure in 4D space (de Wolff, 1974). This 
is based on the fact that the (X-ray) diffraction pattern of 
a crystal is the Fourier spectrum of its electron density. 
The first remark on the diffraction pattern is that it 

7 t  

is indexable with n (>3) vectors as h = ~--~i=1 bib* 
where h is the diffraction vector in 3D space, b* (i = 
1,2 . . . .  , n) are the basis vectors to index the diffraction 
vectors with generalized Miller indices h I, h 2 . . . . .  h,,. 
This implies that the location of diffraction spots is 
related to an n-dimensional lattice. In fact, the diffraction 
spots can be regarded as the projection of the nD 
reciprocal-lattice points onto 3D space. The diffraction 
spots then suggest a periodic structure in nD space. 
From the properties of the Fourier transformation, the 
intersection of electron density at the subspace normal 
to some direction is obtained from the diffraction pattern 
projected onto the subspace along that direction. The 
irrational (gradient) intersection of the periodic electron 
density leads to an aperiodic structure in the intersection. 
Thus, the modulated structure which has lost a period 
along some direction can be expressed as an irrational 
3D intersection of a periodic structure in nD space. The 
symmetry of such a crystal in nD space will be given 
by the space group in nD space. The space groups in 
4D space were calculated in the 1970's (Brown, Billow, 
Neubilser, Wondratschek & Zassenhaus, 1978). 

On the other hand, another remark is reflected in 
the classification of nD space groups for modulated 
structures. In the diffraction pattern of modulated struc- 
tures, we can easily recognize prominent reflections 
constructing a 3D lattice. These So-called main reflec- 
tions are accompanied by weak satellite reflections. This 
means that there exists an average structure with 3D 
periodicity and a weak perturbation from it. This restricts 
the possible point group within the crystallographic ones 
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because the main reflections have to be transformed into 
themselves by it. Therefore, it is convenient to distin- 
guish the three axes in nD space from the others. This 
leads to a finer classification of nD space groups. They 
are called superspace groups. The theory of superspace 
groups was introduced by Janner & Janssen (1977, 1979, 
1980a). The first structure analyses of incommensurate 
and commensurate modulated structures based on 4D 
crystallography were given by van Aalst, den Hollander, 
Peterse & de Wolff (1976) and Valentine, Cavin & Yakel 
(1977). Yamamoto (1982a) derived a general structure- 
factor formula based on nD crystallography. 

Another kind of crystal shows different diffraction 
patterns, in which two or more sets of 3D lattices 
with periods incommensurate to each other are seen. 
This implies that the crystal consists of two or more 
substructures with different periods at least along one 
direction. These are called chimney-ladder structures, 
misfit-layer structures, vernier structures or composite 
crystals. The diffraction patterns of composite crystals 
are also indexable with n (>3) vectors and generalized 
Miller indices• For the same reason as in modulated 
structures, their point group is crystallographic and the 
symmetry is specified by a superspace group (Janner 
& Janssen, 1980a,b). The classification of this super- 
space group should be different from that of modulated 
structures but it is not established yet. In any case, the 
structure can be analyzed on the basis of an nD space 
group or appropriate superspace group. Such structure 
analyses were made by Kato (1990) and van Smaalen 
(1991). 

In contrast to these two kinds of crystal, there are 
no prominent reflections constructing a 3D sublattice 
in quasicrystals. Their diffraction pattern shows a non- 
crystallographic symmetry. The essential difference be- 
tween the quasicrystals and the modulated structures 
or the composite crystals exists in these two points. 
Usually, quasicrystals are defined by a structure show- 
ing diffraction patterns with diffraction spots having 
non-crystallographic point symmetry. Examples of the 
diffraction patterns of a modulated structure and a com- 
posite crystal are shown in Fig. 1, which are compared 
with the typical diffraction patterns of quasicrystals in 
Fig. 2. All the cases can equally be indexed by more than 
three vectors and integers (Miller indices) as shown in 
§2. 

Since the discovery of a quasicrystal in an AI-Mn 
alloy in 1984, extensive studies have been made to 
clarify the structure of this unusual material, which has 
long-range translational order and non-crystallographic 
rotational symmetry. Several important ideas for under- 
standing such diffraction properties have, however, been 
shown in studies long before this discovery. A basic 
concept is a modern n-dimensional (n > 3) crystal- 
lography introduced by de Wolff in 1974 to interpret 
the diffraction patterns of the modulated structure. The 
root of the structural studies of quasicrystal structures 

comes from the Penrose tiling shown in the same year 
(Penrose, 1974, 1977). This is a 2D space filling with 
two kinds of tile without gaps, the vertices of which 
were shown later to give many sharp spots with tenfold 
symmetry in its optical diffraction pattern (Mackay, 
1981). In both cases, mathematical theories have been 
developed to extend the first primitive ideas• In 1984, 
the year of the discovery of the quasicrystal, the theory 
of symmetry of incommensurately modulated structures 
and the description of their structures in n-dimensional 
(riD) space had almost been established• On the other 
hand, a mathematical theory of Penrose tiling had been 
given by de Bruijn 3 years before the discovery of 
the quasicrystal (de Bruijn, 1981) and its extension to 
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Fig. I. Examples of diffraction patterns of modulated and composite 

crystals. (a) a'b* plane of the 2D modulated structure I T-TaS2. (b) 
b'c* plane of the composite crystal [Ba],[(PI, Cu)O3]. 
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the 3D Penrose tiling with icosahedral symmetry was 
published just before the discovery (Kramer & Neff, 
1984). Thus, as soon as the first report by Shechtman 
et  al. was published, the diffraction patterns of the 3D 
Penrose tiling were given (Duneau & Katz, 1985; Katz 
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Fig. 2. Diffraction patterns of (a) octagonal Penrose, (b) Penrose and 
(c) Stampfli tilings. Arrows show vectors needed for indexing. Four 
of them are independent in (b) and (c). 

& Duneau, 1986), clarifying that the first quasicrystal 
found is related to the 3D Penrose tiling and the nD 
crystallography was extended to include quasicrystals 
(Bak, 1986; Janssen, 1986). According to this theory, 
the symmetries of quasicrystals can be given by space 
groups in nD space and their structures are represented 
by 3D sections of periodic structures (crystals) in nD 
space• This is quite similar to the description of modu- 
lated structures. Therefore, we can treat quasicrystals in 
a similar manner. 

Further important progress in experimental studies 
has been made by the discoveries of new kinds of 
quasicrystal and stable quasicrystal. New quasicrystals 
with octagonal, decagonal and dodecagonal symmetries 
have been found in Al-based alloys and Cr-Ni (Wang, 
Chen,& Kuo, 1987; Bendersky, 1985; Ishimasa, Nissen 
& Fukano, 1985) but these necessitate rapid cooling 
from the melt to obtain quasicrystal phases• These are 
called polygonal quasicrystals and have a period along 
one axis (8- 10- or 12-fold axis) but no period in 
the 2D subspace perpendicular to it. In 1986, the T 
phase in the A1-Cu-Li system, which was found in 
1955 (Hardy & Silcock, 1955), was proved to be an 
icosahedral phase (Matthew & Elser, 1986)• This is 
an equilibrium phase so that it is stable• This enabled 
us to grow single-domain quasicrystals (Dubost, Lang, 
Tanaka, Stainfort & Audier, 1986)• The quality of the 
quasicrystals was, however, not very high so that the 
number of observed reflections was less than 100. Very 
high quality stable quasicrystals were first found in 
icosahedral A1-Cu-Fe (i-A1-Cu-Fe) and i-AI-Cu-Cr 
quasicrystals (Tsai, Inoue & Masumoto, 1987, 1989). 
These materials show a superstructure in 6D space with 
the face-centered icosahedral lattice (Ishimasa, Fukano 
& Tsuchimori, 1988; Ebalard & Spaepen, 1989)• A 
superstructure was also found recently in decagonal 
AI-Ni-Co (d-A1-Ni-Co) (Edagawa, Ichihara, Suzuki & 
Takeuchi, 1992). 

There are several methods to obtain quasiperiodic 
tilings. These are classified into four categories, which 
are called the inflation--deflation method (IDM), dual 
method (DM), projection method (PM) and section 
method (SM). The first two methods do not use nD 
space explicitly• In order to understand the symmetry of 
generated tilings, however, the corresponding structures 
in the nD space have to be known because the symmetry 
of quasicrystals is expressed by that of crystals in 
the z~D space, which gives the quasiperiodic tilings 
as intersections in 2D or 3D external (physical, parallel) 
space• It is also necessary to know their diffraction 
patterns, which are regarded as the projections of the 
nD reciprocal lattice along the internal (complementary, 
perpendicular) space• 

Such methods of generating quasiperiodic tilings with 
non-crystallographic symmetries and the decorations of 
them have extensively been considered since the optical 
diffraction pattern of the Penrose tiling is quite similar to 
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the electron diffraction pattern of decagonal AI-Mn and 
the diffraction intensity of the 3D Penrose tiling resem- 
bles that of icosahedral A1-Mn. However, their point 
density was too small compared with that of the real 
quasicrystal. It was shown that important information on 
the decoration can be obtained from a crystal structure 
with nearly the same chemical composition, which is 
called a crystalline approximant (Elser & Henley, 1985; 
Henley & Elser, 1986). The structure of the crystalline 
approximant is related with that of the quasicrystal by 
a linear phason strain (Socolar, Lubensky & Steinhardt, 
1986) or a rotation in nD space (Kramer, 1987). The 
latter is essentially equivalent to the former so that we 
discuss only the former in the following. This method 
provides a crystalline approximant structure from a 
model of a quasicrystal by introducing an appropriate 
phason strain. This was applied to obtain atom positions 
of tr phase from a small number of atom positions in nD 
space without using a model in nD space (Wang & Kuo, 
1988). The periodic structures obtained from quasiperi- 
odic tilings were considered in decagonal cases (Niizeki, 
1991). It was shown that the structure of the R phase 
can be derived from a model of icosahedral A1-Cu-Li 
(Yamamoto, 1992b). Since the direct determination of 
quasicrystal structures is difficult, the structure of the 
crystalline approximant gives important information for 
the model construction. The aim of this paper is to 
describe the subjects mentioned above in a unified way. 

The arrangement of this paper is as follows. We 
discuss nD crystallography of modulated structures and 
composite crystals in §§2 and 3. In §4, the indexing 
problems in quasicrystals are discussed. In §§5 and 6, 
typical quasiperiodic tilings are derived for octagonal, 
decagonal, dodecagonal and icosahedral quasicrystals. 
The symmetry of a quasicrystal is given by an nD 
space group as shown in §7. A derivation of symmetry 
operators from the space-group symbols will be given 
in §8. The morphology of quasicrystals is discussed 
in §9. The structure factor of quasicrystals in several 
approximations will be shown in § 10. In § 11, the method 
of calculating the point density and frequency of subpat- 
terns of the tilings will be described. The quasicrystal 
structure has to be described by a finite number of 
parameters. This problem is discussed in §12. In real 
quasicrystals, the defects specific to quasicrystals are 
observed in almost all cases. This so-called phason 
distortion is considered in § 13. It leads to crystalline ap- 
proximants under special conditions. Effects of a random 
phason in diffraction patterns are also discussed. In § 14, 
the several structure determination methods proposed 
so far are discussed. The modeling of quasicrystals are 
given in the succeeding two sections. The quasiperiodic 
tilings discussed in §§5 and 6 do not always give 
the atom positions of quasicrystals but just give the 
framework of their structures. There are many atoms 
in other positions. Therefore, modifications or simple 
decorations of quasiperiodic tilings will be treated in 

§ 15 and decorations for cluster models will be explained 
in §16. The refinement method is given in §17. In the 
refinement stage, a modification of the model may be 
necessary. This is assisted by the difference Fourier map 
or the maximum-entropy method. The latter is discussed 
in §18. Typical tilings can be classified into the normal 
structure and its superstructure. This is shown in § 19. 

2. Quasiperiodic structures 

It is known that there exist three kinds of quasiperiodic 
structure (aperiodic crystal) mentioned above. Among 
them, the incommensurate modulated structure is the 
simplest one. This is a crystal distorted periodically with 
a period that is incommensurate to that of the crystal. 
The composite crystal can be regarded as a general form 
of the modulated structure. Because of the interaction 
between substructures, one substructure is modulated 
with the period of the other. Thus, there exist two or 
more interpenetrating modulated substructures in a crys- 
tal. Examples of the modulated structure and composite 
crystals are shown in Figs. 3 and 4, which give the 
diffraction patterns of Fig. 1. These two have the average 
structures that are responsible for the main reflections. 
We consider them for comparison with quasicrystals, 
which have no main reflections constructing a three- 
dimensional (3D) lattice. Therefore, it is not appropriate 
to consider the quasicrystal as a modulated structure. 

2.1. 1D analogs 
We compare 2D representations of 1D analogs of 

the three structure types in order to grasp common 
and different points among them. Fig. 5(a) shows the 
standard representation of the modulated structure. The 
'atom' is continuous along the internal (complementary, 

• ~ _  • . 7  A • 

• " . . .  N 

Fig. 3. Ta layer of the modulated structure of I T-TaS2. Atom clusters 
are denoted by solid lines. 
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perpendicular) space V i and displaces along the external 
(physical, parallel) space V ~. The displacement (modula- 
tion function) has a periodicity along the internal space. 
The atom position in the external space is given by an 
intersection of this 2D periodic structure (crystal) with 
the 1D external space (horizontal line). Similarly, the 
composite crystal can be given by an intersection of a 
2D crystal shown in Fig. 5(b), where two kinds of atom 
are present, each of which is continuous along one of the 
edges of the square lattice. In contrast, in the quasicrystal 
shown in Fig. 5(c), the atom is continuous in a limited 
range and has a jump parallel to the external space at 
some points (dotted lines). The continuous part is called 
an occupation domain (acceptance domain, window, 
atom surface). In these cases, their symmetry is specified 
by the 2D space group p2 since only twofold axes are 
present at the lattice points regardless of symmetries of 
the lattices. The 1D composite crystal shown above is 
not realistic because the interatomic distance becomes 
zero at the origin. In 2D composite crystals that are 
represented in 3D space, this can be avoided if their 
coordinates of the additional axis are different. For 
the modulated structures and composite crystals, there 
are two recent review papers (Yamamoto, 1993b; van 
Smaalen, 1995), so that we discuss them only briefly 
here. 

In these 1D examples, the quasicrystal cannot be dis- 
tinguished from the other two by the symmetry, though 
real quasicrystals can. However, their characteristic fea- 

Fig. 4. The perspective view of the composite crystal 
[Balx[(Pt, Cu)O3]. Solid, shaded and open circles represent 
Pt/Cu, Ba and O atoms. 

tures are clearly different from each other. They are 
reflected in the diffraction patterns (Fig. 6). There exist 
prominent main reflections that are arranged periodically 
in the external space V ~ in Fig. 6(a) and two sets of 

V i 

A \  v 

(a) 

v 

(b) 

/1"7-/t_.,"--,k..' i/l  

I • 

(c) 
Fig. 5. The 2D representations of three quasiperiodic structures in 

I D space: (a) modulated crystal, (b) composite crystal and (c) 
quasicrystal. 
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main reflections along the two lines passing through the 
origin in Fig. 6(b) but the prominent reflections have no 
period in Fig. 6(c). If we recognize these differences, 
we can distinguish the three cases by the diffraction 
patterns. This means that even in quasicrystals we can 
consider structures with crystallographic point groups. 
This definition of quasicrystals is somewhat ambiguous 
compared to the usual one, where the quasicrystal is 
defined as a structure with a non-crystallographic point 
group. This problem will be discussed again later. The 
difference of the former two lies not in the symmetry but 
in the diffraction intensity distribution. If two (or more) 
sets of main reflections exist, it is a composite crystal, 
otherwise it is a modulated structure. Keeping these 
characteristics in mind, we compare their modulation 
functions. An important point is that the above represen- 
tations are not unique but there exists an infinite number 
of equivalent representations for the same structures. 
Consider the shear strain that keeps the external space 
(horizontal line) invariant. Examples are shown in Fig. 
7. Note that one substructure in the composite crystal 
can be considered as a modulated structure with a saw- 
tooth modulation function shown by thick and dotted 
lines (Fig. 7b). There are two cases depending on the 
relative average periods. Let the atoms parallel to the 
internal space V ~ be the first substructure and the ones 
oblique to it the second. If the first substructure has 
an average period shorter than that of the second, the 
modulation function is a single-valued function in some 
range and without value in the other (Fig. 7b) while, in 
the opposite case, it has two values in some region. Such 
an example is shown in Fig. 8, where the structure in 
V ~ is the same as in Fig. 7(b) but the substructure with 
the longer period is chosen as the first substructure. In 
the diffraction patterns of real modulated and composite 
crystals shown in Fig. 1, the modulated structure (Fig. 
la)  is 2D modulated so that five vectors are necessary 
to index the diffraction pattern. This is an example of 
modulated structures caused by the charge density waves 
that are seen in transition-metal chalcogenides (Willson, 
DiSalve & Mahajan, 1975). The other one (Fig. lb) is 
an example of typical misfit-layer structures seen also in 
transition-metal chalcogenides (Yamamoto, 1993b; van 
Smaalen, 1995). 

In the above examples, we consider only the lo- 
cation of atoms. The shift of the atom position from 
the average structure is called a displacive modulation. 
There exists another kind of modulation, which is called 
an occupational or substitutional modulation. This is 
usually accompanied by the displacive modulation but, 
in some cases, the displacive modulation is small. In 
the occupational modulation, the occupation probability 
of an atom changes depending on the position. Sub- 
stitutional modulation often occurs in alloys, where an 
atom site is occupied by two atoms and their occupation 
probabilities change with the position. Usually, the dis- 
placive modulation in alloys is small but not negligible 

V i 

(a) 

V e 

(b) 

V e 

/ i 

V e 

(~) 

Fig. 6. Diffraction patterns of the three quasiperiodic structures shown 
in Fig. 5: (a) modulated crystal. (b) composite crystal and (c) 
quasicrystal. 
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V o 

(a) 

V i 
~ p  

V e 

(b) 

/ 

\ 

/ 

\ 

(c) 

_/2 

V e 

Fig. 7. Other representations of I D quasiperiodic structures: (a) 
modulated crystal, (b) composite crystal and (c) quasicrystal. These 
have the same structure as in Fig. 5 in the external space, so that 
they are equivalent to the representations shown in Fig. 5. The 
dotted lines in (b) denote the jump of modulation function of one 
substructure when the modulation function of the substructure is 
regarded as the standard representation. 

(Yamamoto, 1982b). On the other hand, the polytype 
of SiC can be regarded as a commensurately modulated 
structure with a pure occupational modulation, where the 
displacive modulation can be ignored (Yamamoto, 1981; 
Yamamoto & Inoue, 1982). As mentioned before, all 
quasicrystals found so far are alloys except for Ta63Te37, 
which was found quite recently (Krumeich, Conrad 
& Harbrecht, 1994), so that substitutional modulation 
may occur in an occupation domain. In general, the 
temperature factor is also dependent on the position 
(temperature-factor modulation) because the local en- 
vironment is generally different and depends on the 
position. 

2.2. Structure factor 

For the structure-factor calculations, several formu- 
las have been proposed. In the following, we neglect 
the occupational and temperature-factor modulations for 
simplicity. Since the structure is periodic in 2D space, 
the structure factor is given by the Fourier integral of the 
electron density over the unit cell. This has simple forms 
for all cases. Those for the modulated and composite 
crystals are similar to that of the quasicrystals when they 
are expressed in the following form. For the reflection 
with the diffraction vector h = hide' + h 2 d  ~ (d~' and d~ 
being the unit vectors of 2D reciprocal space), this is 

F ( h ) =  E E f"(W')pUexp[-BU(h")2/41 
t~ {Rlt}" 

x exp[27rih. (R~ ~' + t)]g[) '(R-lh),  (1) 

where the average position, temperature factor and oc- 
cupancy of the #th independent atom are represented 
by ~t,, B t, and ply. g~'(h) and f l ' ( h  e) are the Fourier 
integral of the modulation function and atomic scattering 
factor of the #th atom at the diffraction vector h and its 

V i 

Fig. 8. Another representation of the composite crystal. This is 
equivalent to Fig. 7(b). 
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external space component h e. The sum of {Rlt}" runs 
over the symmetry operators of the space group that 
create new atoms in a unit cell from the independent 
ones. They agree with the coset representatives of the 
site-symmetry group. 

The form of the Fourier integral is different in each 
case because of the difference in modulation functions. 
In the modulated structure in Fig. 5(a), there is one atom 
in the unit cell of 2D space and its modulation function 
is given by 

' *. u I sin(2rrS~) --1 A X l ,  ( 2 )  Xl --- 511 ~L dl = Xl _IL 

w h e r e  X 1 and  X 2 are the coordinates of atoms with 
respect to the unit vectors d t and d 2 of the 2D lattice 
(Fig. 5), 511 is the coordinate of the average position, 
which is represented by vertical lines in Fig. 5(a), u is 
the amplitude of the displacement wave parallel to the 
external space. In a simple sinusoidal modulation wave 
as in the present case, the structure factor is given by 
the Bessel function (Yamamoto, 1982a): 

i 
g01(h) = f d52 exp[27ri(hlA271 + h2x2) ] 

0 

= J _ h 2 ( 2 7 r h .  U I), (3) 

where dm is the Bessel function of order m. On the 
other hand, in the composite structure, the unit cell 
accommodates two atoms, so that # takes values 1 and 
2 in (1). For the first atom, the modulation function has 
the same expression as (2). For the second atom, 

272 --- 5~ -t- d;. U 2 sin(27rS~) = 52 + acr~ (4) 

and 

1 
go2(h) = (al/a2) f d~, exp[27ri(h,g, + h2Ax22)] 

0 

-- (al/a2)J_hl(27rh. u2), (5) 

where a I and a 2 are the average periods of the first and 
second substructures in the external space. 

It should be noted that (2)-(5) are independent of the 
difference in the representations in Figs. 5, 7 and 8. Note 
that the Bessel function depends only on the external 
component of the diffraction vector h and the order, 
which is the satellite index. The structure factors of the 
main reflections are given by J0(27rh. u), while those 
of the kth-order satellites are given by Jk(27rh-u). This 
means that the intensity of the main reflection decreases 
with the increase of the external component of h, while 
the satellite intensity increases. Such a tendency is seen 
in Figs. 6(a) and (b). Another important point is that the 
displacive modulation gives second- and higher-order 
satellites even when the modulation wave is harmonic 

as in the present case. They are called diffraction har- 
monics. In contrast to the displacive modulation, the 
occupational or substitutional modulation does not give 
the diffraction harmonics. This case is discussed later. 

For the quasicrystal, g~ can be given by 

g01(h) = f dtexp(27rhit)= 2rsin(27rhir)/2rchir, 
- - T "  

(6) 

where 2r is the length of the atom along the internal 
space (the size of the occupation domain) and h i is the 
internal component of the diffraction vector h. The right- 
hand side of (6) indicates that the intensity decreases 
with the internal components of the diffraction vector. 

Consider a pure occupational modulation, 

P" (X2)  = Pg -F p~ cos (27 rx  2 + qo), (7) 

which represents the continuous change of the occupa- 
tion probability along the second axis without accom- 
panying the displacive modulation. Then the structure 
factor becomes 

and 

F ( h ) =  E E f t '(h~)exp[-Bt'(h~)2/41 
tL {RIt}" 

x exp[27rih. (R-ff " + t)]ag(R-'h) (8) 

I 
t* 90 (h) = f d~ 2 P"(X2) exp(27rih2x2) 

0 

{i i for, O 
= exp(q:iqo)/2 for h 2 = ±1 

otherwise. 
(9) 

This means that the Fourier amplitude P0 contributes 
only to the main reflections and P l to the first-order 
satellite reflections. This is because the structure factor 
depends linearly on the occupation probability. This 
causes a problem in the determination of the occupa- 
tional modulation waves including higher harmonics. 
Since the kth-order Fourier amplitude of the occupa- 
tion probability contributes only the kth-order satellite 
reflection, its intensity is independent of the phase shift 
~. Therefore, we cannot determine the phase shift, which 
is necessary for the determination of the modulation 
wave. Fortunately, the real occupational modulation is 
accompanied by the displacive modulation. Then the 
intensities of the satellite reflections depend on the phase 
shift and they can be determined. It should be noted that, 
if the displacive modulation is weak, the occupational 
modulation wave with wrong phases may give a small 
R factor for the satellite reflections. The final result 
has to be checked by the fact that the occupational 
modulation wave is within a physically reasonable range 
(O_<p_< 1). 
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As a special case of the commensurate occupational 
modulation, we consider the SiC polytype. This provides 
many long-period structures. The lattice is either hexag- 
onal or rhombohedral. This can be regarded as a layer 
structure with the same stacking interval where the Si 
and C atoms are located in each layer at one of three 
special positions (0,0, z), (1/3,2/3, z) or (2/3, 1/3, z) 
of the hexagonal unit cell. If Si takes one of these 
positions, C is always located at the same positions 
but with z + Az. Therefore, the determination of the 
polytype structure is reduced to the determination of 
the Si position. The occupational probability of these 
positions is either one or zero. Thus, we have a sequence 
of zero and one along the c axis, which can be recognized 
as an occupational modulation wave. The modulation 
wave is given in terms of Fourier series. We cannot, 
however, determine the phase shift of each Fourier term 
because of the reason mentioned above. The problem 
is solved by using the penalty function (Yamamoto, 
1981; Yamamoto & Inoue, 1982), which restricts the 
occupation probability of each site within a physically 
reasonable range. 

In real modulated structures, there are several atoms 
in the nD unit cell and the modulation function may 
be anharmonic. Then the Fourier integral g0(h) does 
not have a simple analytic form any more but can be 
calculated numerically. The structure factor of a general 
anharmonic modulation has been given (Yamamoto, 
1982a), which can be expanded in terms of the prod- 
ucts of many Bessel functions (Petfi~ek, Coppens & 
Becker, 1985). The structure factor of composite crys- 
tals is the weighted sum of the structure factor of 

~, ,~  ( v ~ , / v  ~ the modulated substructures as z._,~,=l )F~'(h), 
where V ~ is the unit-cell volume of the uth average 
substructure and F~'(h) is the structure factor of the 
modulated substructure. A least-squares-refinement pro- 
gram based on the general structure-factor formula was 
written by Yamamoto (1982a) and programs applicable 
to composite crystals by Kato (1990), Petfi~.ek, Maly, 
Coppens, Bu, Cisarova & Frost-Jenssen (1991) and 
Yamamoto, Takayama-Muromachi, Izumi, lshigaki & 
Asano (1992).* 

2.3. Symmetry 
The symmetry of the modulated and composite crys- 

tals is given by a space group of higher-dimensional 
space so that, in the present case, the space group is 
given by a 2D space group. This is also applicable 
to the quasicrystals. A characteristic feature for such 
quasiperiodic structures is that their space groups only 
necessitate a part of 2D space groups. For example, 
the space groups with square and hexagonal lattices 
do not appear, since the first and second axes are 

* A program system for modulated and composite crystals written 
by the author can be obtained via the Internet by anonymous ftp 
(ftp.nirim.go.jp/pub/sci/REMOS). 

equivalent in these cases, while they are not equivalent 
in the quasiperiodic structures. The condition for their 
point groups is that they are (1 + 1)-reducible. In real 
quasiperiodic structures in 3D space, which can be 
represented as an nD crystal, the point groups are 
(3 + d)-reducible, where d = n - 3 is the dimension of 
the internal space. This means that the matrix represen- 
tation of the rotation operator in 2D (riD) space becomes 
a (1 + 1) block diagonal [(3 + d) block diagonal] matrix 
by an appropriate transformation, or there exist two 
subspaces, each of which is invariant under the point 
group. For modulated and composite crystals, another 
condition comes from the incommensurability between 
the axes. In nD cases, the external components of 
additional d axes are incommensurable with those of 
the first three axes. A similar condition excludes space 
groups with a rectangle lattice in the present 2D case. 
Thus, the allowed space groups in 2D are only p 1 and p2, 
which are represented by the superspace-group symbols 
1 (o~) 1 and i-(o~)T (see below). 

In fictitious modulated structures in 2D space with 1D 
modulation, the same condition excludes orthorhombic, 
tetragonal, hexagonal and cubic 3D space groups and 
only the triclinic and monoclinic space groups are related 
with the symmetry of such structures as shown by 
de Wolff (1974). Furthermore, in order to distinguish 
between main and satellite reflections, a classification 
finer than that for usual space groups (or nD space 
groups in general cases) was introduced. The space 
groups classified by such an equivalence relation are 
called superspace groups. In fact, 15 triclinic and mono- 
clinic 3D space groups are classified into 22 (2 + 1)D 
superspace groups. 

3. Modulated and composite crystals 

3.1. Superspace-group symbols 
The symbol of the (3 + d)D superspace group consists 

of the symbol of a 3D space group of the average 
structure and additional symbols. In the following, we 
consider only (3 + I)D cases. There are two types of 
symbol, one-line and two-line symbols. In the one-line 
symbol, the superspace group is expressed by the 3D 
space-group symbol followed by the modulation wave 
vector and the translation along the additional axis. 
For example, consider two superspace-group symbols, 
P3112(1/3, 1/3, ~) and R32(0, 0, ")')tO. These mean that 
their average structures have the space groups P3~ 12 
and R32 and the wave vectors of the modulation waves 

! a ,  I b* are 3 + .~ + ~c* and ~c* where a Greek letter 
represents an irrational number and the hexagonal unit 
vectors a*, b*, c* are used to express the wave vector 
in the rhombohedral case. (If the lattice of the average 
structure is centered, the wave vector is represented by 
the unit-vector components with respect to the centered 
lattice.) The former superspace group has no intrinsic 
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part of the translation along the fourth axis, while 
the latter has a 1/3 translation along the fourth axis 
for the threefold rotation. If the intrinsic parts of the 
translation along the fourth axis accompanied by the 
operators in the symbol are all zero, they are neglected 
as in the first symbol.J- The same superspace groups 

12 /~R3_2 are represented also by RP~,li and - t ] -  The two-line 
symbol consists of the prefix representing the rational 
part of the modulation wave and the space-group symbol 
in the upper line and the intrinsic translation along the 
fourth axis corresponding to the operators in the space- 
group symbol (de Wolff, Janssen & Janner, 1981) in 
the lower line. If this is zero, 1 or ]- is written in the 
lower line according to whether the rotation operator 
transforms the irrational component of the wave vector 
into itself or its inversion. In the present case, twofold 
rotation in the ab plane inverts k -- 0'c* into - k ,  so that 
the corresponding symbol in the lower line is ]-. The 
prefixes A, B, C, L, M, N, U, V, W and R represent the 
rational components (1/2, 0, 0), (0, 1/2, 0), (0, 0, 1/2), 
(1,0,0), (0, 1,0), (0,0,1), (0 ,1 /2 ,1 /2) ,  (1 /2 ,0 ,1 /2) ,  
(1/2, 1/2,0) and (1/3, 1/3,0) in the modulation wave 
vector. The intrinsic parts of the translation along the 

1 and + ~ are represented by s, t, fourth axis, + ½, + ½, + 
q and h in both symbols. The superspace groups are not 
equivalent if the space groups of the average structures 
are not equivalent to each other as usual 3D space 
groups. Therefore, some superspace groups may be 
equivalent to each other under the equivalence relation 
of nD space groups. In fact, these two superspace groups 
are equivalent as the 4D space group. 

If the wave vector is located at the Brillouin zone 
boundary of the average structure, it has a rational 
component of 1/2, 1/3 or 1. The last one appears only 
in the centered lattice. In the first two cases, we use 
new centered lattices in 4D space. In the first case, 
the corresponding axis is doubled or the reciprocal unit 
vector is halved, except for the tetragonal lattice with 
the wave vector (1/2, 1/2, "3'). Then, the centered lattice 
gives the reflection conditions for general reflections 
[see Table 9.8.3.6 in Janssen, Janner, Looijenga-Vos & 
de Wolff (1992)]. The second one appears only in the 
trigonal system with the form (1/3, 1/3, 9'). In this case, 
we take the new axes a*' -- i 3(a* + b * ) ,  b*' =3~Lt-a* + 
2b*) and c*' = c*. Then, the reflection condition for 
this centered lattice is given by h I - h 2 - h a = 3n 
for general reflections hlh2h3h 4. In the exceptional 
tetragonal case with the wave vector (1/2, 1/2, 7), we 
take a*' = ½(a* + b*), b*' = ½(-a* + b*) and 
c*' = c*. The reflection condition for general reflections 

]" The intrinsic part of the translation is the part that is invari- 
ant under the shift of the origin. For example, in the operator 
{ t r : l l / 2 ,  i /2 ,  I /2},  the intrinsic part is -la + ½b since, if we choose 
the origin at ¼c, this becomes {c t : l l /2 ,  1/2,0}.  Note that if the 
rotation operator inverts some axes, the corresponding translation 
components are not intrinsic but specify the location of the symmetry 
element. 

then becomes h I + h 2 + h 4 --  2n. For these cases, the 
new a and b axes in the standard setting are rotated by 
30 and 45 ° from the original ones. 

The superspace group of composite crystals can 
be specified by a superspace group of modulated 
structures (Janner & Janssen, 1980b). However, there 
exist many cases where the superspace group of 
one modulated substructure is not equivalent to that 
of the other substructure. In Bar(Cu, Pt)O 3, the two 
average substructures have space groups P31c and 
R3m, which are clearly non-equivalent as 3D space 
groups, so that corresponding 4D superspace groups 
of modulated substructures, P31c(1/3,  1/3,'Yl) and 
R3m(O,O, 72)Os, are not equivalent as superspace 
groups but equivalent as 4D space groups. Thus, 
the equivalence relation for superspace groups of 
composite crystals must be different from that for 
the superspace groups of modulated structures. One 
possibility is to use an nD space group but this 
cannot take into account the existence of main and 
satellite reflections, which is the characteristic feature 
of composite crystals. Yamamoto (1992a) proposed 
the combined use of two superspace-group symbols 
for Composite crystals with two substructures. In this 
symbol, the superspace group of Bax(CU, Pt)O 3 is 
represented by P31c(1 /3 ,1 /3 ,71)  : R3m(O,O, Te)Os. 
A similar superspace group P3112(1/3,1/3,71) : 
R32(0, 0, 72)t0 appears in the inclusion compound with 
1,10-dibromodecane, which is the combination of the 
two superspace groups discussed above. In this notation, 
a limited setting (unified setting) is used to remove 
an ambiguity of the symbol. The wave vector of one 
modulated substructure is chosen among the reciprocal- 
lattice vectors of the other. Then the treatment of the 
composite structure becomes similar to that of the 
modulated structure. In particular, the introduction of 
completely new symbols for composite structures is not 
necessary but necessitates several additional prefixes in 
the two-line symbol (Yamamoto, 1992a). The unified 
setting, however, may require a non-standard setting 
for the unit cell of the average structure and for the 
superspace group. For example, the body-centered lattice 
or face-centered lattice may be necessary for monoclinic 
or triclinic cases [see Table 1 in Yamamoto (1993b)].* 
The choice of the modulation wave may lead to the 
rational component like (1, 1/2, 0), for which the prefix 
of the two-line symbol was not given. The extended 
prefix necessary for superspace groups of composite 

* In this table, the superspace group MFTI~I • Jil"-m2-m ' "  III  of [MIX]., 
[M = (Pb, Ta, S), (Sm, Ta, S) and (Bi, Ta, Se)] should be read as 
x F m 2 m  . vF~z2_m 

i I ,~  I t I • T h e  s u p e r s p a c e  g r o u p s  o f  [M3CrX3]x[M3X],.[Cr7Xt2] 
oP63 Im " ~.P6~ I,,, for (M, X) = (Ba, Se), (St, S), (Eu, S), (Pb, S) i s ,  p ..... 2 : rp.ss. 2 : 

e~p6 3 / m .s.,. 2, where .ss. below 63 means that the sixfoid screw axis does 
not change the second and third wave vectors and the corresponding 
shifts along the fourth and fifth axes are both 1/2 while 2 below m 
shows that the mirror plane inverts both wave vectors. The superspace 

group of [Br].,tTrF] should be replaced by P C ] / ' 7  • Pc] / ' I ' .  
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structures or for non-standard settings of superspace 
groups are given by Yamamoto (1992a). The added 
symbols are D, E, F, G, H, I, X, Y and Z for (1/2, 1,0), 
(1/2,0,  1), (0, 1/2, 1), (1, 1/2,0), (1,0, 1/2), (0, 1, 1/2), 
(0, 1, 1), (1, 0, 1) and (1, 1,0). The symbol is applicable 
to almost all composite structures found so far. There is 
one exceptional case, Hg3_xASF 6, in which there exist 
two Hg substructures and one Hg substructure is related 
to the other by the symmetry operator in the nD space 
group. This symmetry operator is not included in the 
superspace group of each substructure. This reminds 
us of the groupoid symmetry in normal crystals. In 
some cases, the space-group symmetry cannot give the 
true diffraction symmetry of crystals. This is known 
as diffraction enhancement. The general theory of 
diffraction enhancement has been given by Sadanaga 
& Ohsumi (1979). They showed that the symmetry 
of crystals in a category can be given by a groupoid, 
which is a set of symmetry operators of substructures 
and operators transforming one substructure into the 
other. The former constructs a space group and is called 
the kernel of the groupoid, while the latter is called 
the hull. Such a case appears in the commensurate 
phase (locked-in phase) of NbTe 4 (Yamamoto, 1985b). 
This consists of four (NbTea) ~ columns parallel to 
the tetragonal c axis, which are located at (0, 0, z), 
(0, 1/2, z), (1/2, 0, z) and (1/2, 1/2, z) (Bronsma, van 
Smaalen, de Boer, Wiegers, Jellinek & Mahy, 1987; 
Budkowski, Prodan, Marinkovi6, Kucharczyk, Uszyfiski 
& Boswell, 1989). The second and third columns 
are obtained from the first one by the translations of 
{El0, 1/2, 1/3} and {El1/2,  0, 1/3} and the fourth one 
with {El l /2 ,  1/2,2/3}.  They are not included in the 
space group but special extinction rules suggest the 
existence of such operators. In the case of Hg3_xAsF 6, 
the situation is slightly different because the kernel and 
the hull construct a higher-dimensional space group. 
The groupoid includes the group, so that this can be 
considered as a special case of the groupoid symmetry. 
It is noted that elements of the hull can be used in the 
usual refinement program. Therefore, the analysis based 
on the groupoid symmetry is applicable to Hg3_xAsF 6 
and NbTe 4. 

The superspace groups of 1D modulated structures are 
listed by de Wolff, Janssen & Janner (1981) (see also 
Yamamoto, Janssen, Janner & de Wolff, 1985). Their 
symmetry operators and superspace groups equivalent 
to them are available via the Internet from the author 
(http:Hwww.nirim.go.jp/,-~yamamoto). Provisional tables 
of superspace groups and symmetry operators for 2D 
modulated structures are also available from the same 
WWW site. In some settings of the unit vectors of a 
1D modulated structure, the superspace-group symbol is 
not present in the table of de Wolff, Janssen & Janner 
(1981) or in International Tables for Crystallography 
(Janssen, Janner, Looijenga-Vos & de Wolff, 1992). This 
is however equivalent to one superspace group in the 

table. In particular, we may encounter one superspace 
group related to the different choice of the modulation 
wave vector. This is discussed by Yamamoto, Janssen, 
Janner & de Wolff (1985). In such a case, we can 
find the superspace group in the standard setting by the 
different choice of the unit vector and/or wave vectors 
as discussed below. 

3.2. Superspace-group determination 

As is clear from the symbol of the superspace group, 
the space group of the average structure has to be 
determined by diffraction patterns of main reflections. 
The wave vector is also easily found from the diffraction 
pattern. Finally, we have to determine the intrinsic 
part of the translation along the fourth axis. This is 
obtained from the reflection conditions or extinction 
rules. In order to consider the reflection conditions, we 
have to use an appropriate centered cell for the cases 
where the wave vector is located at the Brillouin-zone 
boundary and, as a result, the wave vector includes 
rational components as discussed above. If such a set- 
ting is not a standard one, we can interchange the 
unit vectors a*, b*, c*. In International Tables for 
Crystallography (Janssen, Janner, Looijenga-Vos & de 
Wolff, 1992), the axes are chosen so that the irrational 
component of the wave vector is parallel to the c* axes 
in the axial monoclinic, orthorhombic, tetragonal and 
hexagonal/trigonal systems. In the planar monoclinic 
system, the wave vector is chosen as (~, [3, 0). Another 
setting is possible by adding a reciprocal-lattice vector of 
the average structure to the wave vector. This sometimes 
leads to a superspace group with standard setting having 
different reflection conditions. The superspace group of 
the standard setting will be found by such a procedure. 
Finally, the symmetry operators of the superspace groups 
are obtained from the author's table mentioned above 
or can be calculated from the symbol since the symbol 
consists of the generator of the group. The determina- 
tion of the superspace groups of composite crystals is 
somewhat complicated (see Yamamoto, 1992a, 1993b; 
van Smaalen, 1995). The superspace group can also 
be determined by convergent-beam electron diffraction 
(Terauchi, Takahashi & Tanaka, 1994). 

3.3. Structure determination 

For the modulated and composite crystals, the 
trial-and-error method is useful in particular for one- 
dimensionally modulated structures. This is because 
the average structure can be analyzed by conventional 
methods and the modulation is a weak perturbation. 
Thus, the least-squares method is applicable to the de- 
termination of modulation functions. The determination 
of the modulated crystals (or composite crystals) can 
be made in two steps. First, the average structure (or 
average substructure) is determined by using only main 
reflections (or main reflections of each substructure). 
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Since the average structure is a 3D periodic structure, 
any techniques for conventional crystals are applicable. 
It should be noted, however, that the temperature factor 
of the average structure is affected by the presence 
of the displacive modulation and we may have large 
temperature factors. This will be reduced when the 
displacive modulation is taken into account. The effect 
of the displacive modulation in the temperature factor is 
usually anisotropic, since the displacement of atoms is 
in general anisotropic. In composite crystals, the relative 
positions of average substructures are determined by the 
reflections common to the substructures. 

In many cases, the refinement method is efficient to 
determine the modulated or composite crystal structures. 
In particular, it is successfully used in 1D modulated 
structures. In this case, the Fourier amplitude corre- 
sponding to prominent satellite reflections is refined first. 
Usually, the first-order satellite reflections are strongest 
compared with the higher-order ones. Then, we can 
refine the first-order Fourier amplitude first starting 
from an appropriate initial value and add the Fourier 
amplitude of the next-strongest satellites. This is based 
on the fact that the nth-order Fourier amplitude of 
the modulation function contributes mainly to the nth- 
order satellite reflections. If the atoms are located at 
the special position in the average structure, the form 
of its modulation functions are generally constrained 
because of the site symmetry in the superspace group. 
Such constraint conditions are discussed by Yamamoto 
(1982b,c). The form of the restriction depends on the 
transformation properties of the modulation function 
because they are different for a scalar, a polar and an 
axial vector, and a tensor. The restriction comes from the 
fact that the modulation functions have to be invariant 
under the site symmetry. For example, let the modulation 
function of the displacement u(~,4) be invariant for 
{R]7-}. This condition is written as 

u(~4) =/~u({t~lT-}-1~4) =/~u(±Z4 7: 7-4), (10) 

when Rk  = +k ,  where r 4 is the fourth component of the 
nonprimitive translation 7-. The action of the rotation R 
on the displacement vector u is the same as in the usual 
3D space group since the rotation matrix in the standard 
setting is (3 + 1) block diagonal and the first 3 × 3 
part is the same as the matrix in the 3D space group 
of the average structure. [Note that a and b axes for 
k = ( 1 / 3 , 1 / 3 , 3 , ) i n  the trigonal and k = (1/2, 1/2,-),) 
in the tetragonal cases are rotated in the standard setting 
as mentioned above.] 

The restriction of the modulation wave is also ap- 
plicable to composite crystals. The composite structure 
is a general case where there exist several modulated 
substructures in a crystal as mentioned above. We can 
choose the standard setting for each modulated sub- 
structure when we consider that substructure (see Figs. 
7b and 8). As shown in §2.2, the structure factor 

does not depend on the setting. Thus, the possible 
modulation waves for each substructure can be obtained 
by considering the superspace group of that substructure 
and the site symmetry. Several other methods have 
been developed to obtain the modulation functions. The 
Patterson or partial Patterson function in 4D space was 
used for modulated structures by Steurer (1987). The 
direct method was introduced by Xiang, Fan, Wu, Li 
& Pan (1990). The maximum-entropy method (MEM) 
was employed for known structures and its possibility 
in structure determination was discussed (Steurer, 1991). 
They were applied to 1D modulated structures. 

In our experience, the selection of initial Fourier 
amplitude seems not such a serious problem for 1D 
modulated structures. The procedure mentioned above 
gives smooth convergence of the R factor in many 
cases. On the other hand, in some 2D or 3D modulated 
structures, the situation is different. If we choose a 
wrong amplitude, the correct result may not be obtained. 
This is due to the following. In the 1D case, the sine 
(or cosine) wave with positive and negative amplitudes 
with the same absolute value is equivalent since this is 
equivalent to the phase shift of the modulation wave 
by 7r and the first structure is overlapped by the second 
by an appropriate shift in the external space. On the 
other hand, in the 2D case, there exist two modulation 
waves for one atom and their wave vectors are generally 
oriented in different directions. Then the change of the 
sign of the amplitude may cause a different structure. 
For example, consider the 2D modulated hexagonal 
structure with modulation wave cos[27r~4] + cos[27r~5] + 
c°s[27r(z4 + zs)], where the modulation wave vectors 
are ((~,0,0) and (0, a ,0 ) .  This is not equivalent to 
-c°s[27rz4] - c°s[27r~5] - c°s[27r(~4 + ~5)], since these 
functions cannot be overlapped by any phase shift, 
giving essentially different structures. In such a case, 
we need to know the correct sign or to try both cases. 
The Patterson and direct methods may be efficient in 
such cases but no attempt has been made so far. 

In some organic compounds, the refinement encoun- 
ters a difficulty because the number of parameters is not 
small compared to the number of observed reflections. 
Then it may be efficient to use a rigid-molecule ap- 
proximation, where the internal motion of the molecule 
is neglected. The motion of the molecule is specified 
by six parameters, three for the translation of the rigid 
molecule and three for the small rotation around an axis. 
If the rotation is small, the displacement of all atoms in 
a molecule can be specified by an axial vector a; by 
the vector product co x r~', where r~' is the positional 
vector of the #th atom in the molecule from its center 
of gravity. Such an approximation was implemented by 
Petfi~ek, Coppens & Becker (1985) in their refinement 
program JANA. This is not applicable to large rotational 
motions. Such a large motion was observed recently 
in hexamethylenetetramine suberate (Gaillard, Paciorek 
& Chapuis, 1995). This shows the diffraction pattern 
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Table 1. Modulated crystals with ID modulations and their superspace groups 

Compound 

LiTe 3 

~-[NH3C3HT]2MnCI 4 

MAxTe 2 (M = Nb, T a ,  A = Si, Oe) 

NbGeo.4Te2 

,,-[NH3C3H7] 2 - MnCI 4 

NaaTiP209 

Na4.5 FeP208 

TaSio.36Te2 

Y(Ba, Sr)2Cu2..s Bo..sO x 

Ko.3MoO3 

Rbo.3MoO3 

LaMosOl4 

C u 3 _ x T e  2 

N i 3 _ x T e  2 

B i 2 . 0 g S r 1 . 8 4 C u O 6 - x  

(1 --x)Ta205 • xWO 3 

ZrO2_xF2x 

Lai.l(,Mo8Oi6 

Nb2Zrx- 202x+ i 

Yb3_xS4 

Mo8023 

Tao.72 Nb0.28Te4 

[NH3(C3H7)]2 . CuCl 4 

o-PbO 

SC(NH2)2 

z-[NH3(C3H7)]2 • MnCI 4 

TaTe 4 

Bi2(Sr,Ca)sCu2Os+ ~ 

Bi2Sr3Fe2Og+, 

-I -Na2CO 3 

KFeF 4 

Cs2CdBr 4 

AuTe~ 

A(AI, Si)40 s A = (Na, Ca) 

ZrTiO 4 

CuAull 

NaNO~ 

BaMnF 4 

SC(NH2)2 

DMM(TCNQ) 2 

¢t - U  

NiTe 4 

One-line symbol Two-line symbol 

R3 m 
R3m(OO') )Os l" 1 s 

P21/b(O/JO)Os p ~ ] / h  s 
p Pnma 

Pnma(O0~, )sO0 " s I i 

Abma(oOI  ) . Abma 
/V 111 

P 2 /  c(o dO)Os pP2/c  
I s 

Bmcm(O ½ "). )sO0 " .~- I Bmcm 

D P n m a  
Pnma(OOq )sO() - .~- I i 

Prnmm(O,J 1 ) rein_ram 
- "-" I I I  

C 2 / m  (03 ½)sO C C2/m 
s 1 

C2/  m (Od ~ )sO C c2/'~ 
- s ] 

19 C2ca C2ca(030)  - Ill 

Pmmm(Od ½ ) "~c'Pm~ml l l 

Pmmm( clOO )OOs o Pmmm 
~ I I s  

A 2 /  a(r,O'?, ) p a2/a 
I I 

p ( 'mmm 
Cmmm(O30)sO0 - s I I 

Cmmm( O 30 )sO0 o c, . . . .  
" s l  I 

i4(00~ J ) p 1~ 
Amma(o  i 0)0s0 ~./¢A . . . . . .  

x,~ I s I 

Pnma( O dO )OOs p Pnmt, 
- -  I I s  

I B P2/c P2/c(os_ , . )  I I 
p P4 / m'c 

P4/ncc(OOG,) t I l l  

Pbca 
Pbca(OOq )ssO P .,-.,-I 

p ( '2 rob 
C2mb(O03 ) - J lJ 

p Pnma 
Pnma(O.'~O)sO0 - .,. *1 

p A bma 
Abma(O30)sO0 - .~ i o 

P 4 /  ncc(OO~j ) p P4/mc 
1 I I I  

M B b m b  
Bbmb(O,4 I) '" I I I 

M t"mmm Fmmm(O,zt I )OOs '" I i . ,  
pC2/m 

C 2 / m ( o 0 9  ) I o 

Amma(O.JO)OOs D a m  ..... 
- -  I 1 . ~  

Pnma( o O0 )Os s P P'"'" 

C2 / m( o 03 )Os p c2 / ,,, 
I 
PI 

p I'bc2 I 
Pbc21 (0. J()) i I i 

Fmmm(O. JO) ~d F,,,,.., " I l l  
p h l l l l t l l l  

hnmm(oO0)  - i . ,  I 

I I ) O q q  U e2_,,,t, P21 nb( o 5_ _ I qq 

p Pmml 
Pnma(O.;~O) - I I I  

P I  
P1(o.7")) P i 

, A 1'21m 
P2/m(½.J ' , )  I I 

I ~ z  P4 / m,," 
P41mcc ( I  2 " " )  I I I I  

References 
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Evain, van der Lee, Monconduit & Petfieek (1994); 
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(1994) 
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van der Lee, Evain, Monconduit, Brec, Rouxel & Petfieek 
(1994) 

Li, Li & Zhao (1993) 

Schutte & de Boer (1993b) 

Schutte & de Boer (1993b) 

Leligny, Labbe, Ledesert, Hervieu, Raveau & McCarroll (1993) 

Schutte & de Boer (1993a) 

Schutte & de Boer (1993a) 

Leligny, Durcok, Labbe, Ledesert & Raveau (1992) 

Schmid, Withers & Thompson (1992) 

Thompson, Withers & Kepert (1991) 

Leligny, Labbe. Ledesert, Raveau, Vaidez & McCarroil (1992) 

Withers, Thompson & Hyde ( ! 991 ) 

Withers, Hyde. Prodan & Boswell (1990) 

Komdeur. de Boer & van Smaalen (1990) 

Kucharczyk, Budkowski, Boswell. Prodan & MarinkoviE (1990) 

Doudin & Chapuis (1990) 

Hedoux, Grebille & Gamier (1989) 

Zfifiiga. Madariaga. Paciorek. P6rez-Mato. Ezpeleta & 
Etxebarria (1989) 

Steurer & Depmeier (1989) 

Budkowski, Prodan. Marinkovi6, Kucharczyk, Uszyfiski & 
Boswell (1989) 

Yamamoto. Hirotsu, Nakamura & Nagakura (1989) 

Perez. Leligny. Grebille. Labbe. Groult & Raveau (1995) 

Meyer, Paciorek. Schenk & Chapuis (1995); van Aalst. 
den Hollander. Peterse & de Wolff (1976) 

Sciau & Grebille (1989) 

Speziali & Chapuis (1989) 

Schutte & de Boer (1988) 

Yamamoto, Nakazawa, Kitamura & Morimoto (1984): Steurer 
& Jagodzinski (1988) 

Yamamoto, Yamada, lkawa, Fukunaga, Tanaka & Marumo 
(1991) 

Yamamoto (! 982b) 

Yamamoto (1985a) 

Sciau, Lapasset, Grebille & Berar (1988) 

Gao, Gajhede, Mallinson, Peffi~ek & Coppens (1988) 

Steurer, Visser, van Smaalen & de Boer (1987) 

van Smaalen & Haas (1985); van Smaalen & George (1987) 

Prodan & Boswell (1987) 
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Compound 

a-CuNSal-Cu(C 8 H 8 NO 2 )2 

o-NiNSal- Ni(C 8 H 8 NO 2 )2 

Biphenyl 

Bao.sMsOi6 M = (Ti, V, Cr) 

Table 1. (cont.) 

One-line symbol Two-line symbol References 

Iba2 
lba2(~O0) r Ili Steurer & Adlhart (1983a) 

p t ba2 
lba2(c~O0) - I 11 Steurer & Adlhart (1983b) 

Pa(OdO) PPa I Baudour & Sanquer (1983) 

14/m(OO'r) pI4/m_ Xiang, Fan, Wu, Li & Pan (1990) 
I I 

Table 2. Modulated crystals with 2D or 3D modulations and their superspace groups 

Compound One-line symbol Two-line symbol 

TTF-TCNQ P2t l c  (c~/~O) p P 2 . / c  - - c ' m  m 
PI 

Mo2S 3 PI(o/37)(AIw) Pp2 

BaNiP 2 P63mc(  o oO ) P P63mc --p6 mm 

Au2+xCdl-x P 6 3 / m m c ( ° ° O )  pP63/mm, 
- Ico  I mm 

I T-TaS2 e?3(ad ½ ) T~ 
c-CuSb P 6 3 / m m c ( o a O )  pP63/mmc - p6 Imm 

Fe i _ xO Fm3m(  aO0) o ~m3_m "Pm3m 

V6Nil6Si7 l m 3 m ( o o  i + ~ )  ~i Im3m */:m3m 
Cu2S. S 2 Fm3m(o~oo)  --Pl"m3-mFm3m 

References 

Coppens, Petfi~ek, Levendis, Larsen, Paturle, Yan & LeGrand (1987) 

Schutte, Disselborg & de Boer (1993) 

van der Lee, van Smaalen, Wiegers & de Boer (1991) 

Yamamoto (1983b) 

Yamamoto (1983a) 

Motai, Watanabe & Hashimoto (1993) 

Yamamoto (1982a,b) 

Withers, Feng & Lu (1990) 

Ohmasa, Hiraga, Tomeoda & Ueda (1995) 

Table 3. Composite crystals and their superspace groups; the substructures are enclosed by brackets 

Compound One-line symbol Two-line symbol References 

[LaSIxICrS2] 

[LaSIx[NbS 2 ] 

[PbSlx[TiS2] 

[SnS]x[NbS 2] 

[PbS]x[VS2] 

[Sr]x[TiS3] 

[Ba]x [TiS 3 ] 

[Sr2Cu203 ] [CuO2 ]x 

[BalxIFeS2] 
[BiSe]x[TaSe 2 ] 

[ZrA]IAIx (A = N, O, F) 

C|(oI +/~7) : C](oi + d'~) 
C m 2 a ( o  ! 1½) • Fm2m(o~ 210) 

C2/m(01"y t )sO : C21/m(01"r2) 

C m 2 a ( o  110) : C m 2 m ( o 2 1 0  ) 

F2(o~ 110) : Cm(o21 I )  

P31c(½ t 3qt)  : R3m(0072) 

P3 Ic(½ t ] '~t) " R3m(00-r2) 

A21ma(017t) : A2ima(O132)  

14mm( i O'Y l ) l Ss :14bm( l O3 2 ) l ss 

F m 2 m ( o l O 0 )  . Pm2m(t~2 I I ~ )  

Abmm(OO'y I )OsO : Pmcm(O l'~2 ) 

i C m 2 a  . A,cF_m2m 
iiJ " I l s  

M c 2 / m  MC~ll/m 
s I : i 

M C m ~  . ~urC_m2m 
I i l  ' "  I I s  

M7/ , 
R P3 Ic D R3m 

Ill " ~ I s 
nP31c oR3m 

III : ~ Is 

M A 2 1 m a  MA21ma_ 
I sl  : " -  I sl  

L I4mm , 14bin 
I s s  : L Iss 

pF_m~ . t tP_m2m 
II1 "" I I I  

pAbmm_ . 11 Pmcm 
Isl ~ .311 

Kato (1990) 

van Smaalen ( 1991 ) 

van Smaalen (1991) 

van Smaalen (1989) 

van Smaalen (1989) 

Onoda, Saeki, Yamamoto & Kato (1993) 

Ukei, Yamamoto, Watanabe, Shishido & Fukuda 
(1993) 

Ukei, Shishido & Fukuda (1994) 

Onoda & Kato ( 1991 ) 

Petfi~ek, Cisarova, de Boer, Zhou, Meetsma, Wiegers 
& van Smaalen (1993) 

Schmid & Withers (1995) 

of I D modulated structures but the satellite reflection 
intensities are comparable with those of  main reflections, 
indicating that the modulation amplitudes are very large. 
In addition, the modulation wave is strongly unharmonic, 
giving up to fourth-order satellite reflections. In princi- 
ple, the complete description of  a rotational motion of a 
rigid body can be made by the rotation around the center 
of  gravity, which is given by an orthogonal matrix. It is 
known that the 3 x 3 orthogonal matrix can be given by 
three parameters known as the Eulerian angles ~o, 0 and 
~b. It is noted that the description is more complicated 
than that of the approximation mentioned above but it 
does not necessitate additional parameters. Therefore, we 
can consider a program where the translation vector and 

the Eulerian angles are refined as a function of the fourth 
coordinate. Such a program has not been written yet. 

3.4. Examples of modulated and composite crystals 

Since the first application of nD crystallography to 
-y-Na2NO 3 by van Aalst, den Hollander, Peterse & de 
Wolff (1976), the ID modulated crystals have been 
determined extensively on the basis of the superspace 
groups (Table 1). The application of the theory to 2D and 
3D cases were given by Yamamoto (1982a,c, 1983a,b). 
The composite crystal structure of [LaS]x[CrS2] was 
analyzed for the first time based on the superspace 
group by Kato (1990). The examples of the modulated- 
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structure analyses for 2D or 3D modulated crystals and 
those of composite crystals are, however, not many in 
number. They are listed in Tables 2 and 3. There are 
many other composite crystals to which such a theory 
has not been applied [see Table 1 in Yamamoto (1993b)]. 

4. Indexing of diffraction patterns of quasicrystals 

A characteristic feature of quasicrystals is seen in the 
diffraction pattern, which consists of sharp diffraction 
spots with non-crystallographic symmetry. Such diffrac- 
tion patterns cannot be indexed by three (reciprocal) 
vectors and three Miller indices. In the hypothetical 
2D quasicrystals like the octagonal Penrose, Penrose 
and Stampfli tilings, we need four vectors and four 
integers. According to nD crystallography, this indicates 
that these can be described as crystals in 4D space. 
In this theory, the location of diffraction spots in the 
external space is regarded as the projection of the lattice 
points of the reciprocal lattice in nD space onto the 
external space and their intensity as Fourier spectra 
of a crystal in nD space. Such an interpretation is 
possible because the diffraction intensity is given by the 
Fourier spectra of the crystal. From the properties of 
the Fourier transformation, the diffraction pattern of an 
intersection of the structure is given by the projection of 
the structure factor along the internal (complementary, 
perpendicular) space, which is normal to the external 
space. This principle was applied to the interpretation 
of the diffraction patterns of incommensurate structures 
and enabled us to give their nD description as mentioned 
above. This is independent of the symmetry of the 
diffraction patterns and is applicable to quasicrystals. 
Therefore, if all the reflections can be assigned by 
using n reciprocal unit vectors, they are regarded as the 
reciprocal unit vectors in nD space. 

4.1. Polygonal quasicrystals 
As examples of fictitious polygonal quasicrystals, 

we first consider the octagonal Penrose, Penrose and 
Stampfli tilings, which are tilings in 2D space. These 
have diffraction patterns with octagonal, decagonal and 
dodecagonal symmetries, which can be regarded as 
the projection of reciprocal lattices in 4D space. Their 
diffraction patterns are shown in Figs. 2(a)-(c), which 
are calculated by the 4D description of these patterns as 
shown later. For these cases, four vectors d*" (i _< 4) are 
sufficient for indexing and each diffraction spot located 
at h is expressed as ~--]~=1 hid*" with Miller indices 
h I h2h3h4 (Figs. 9a-c). The diffraction pattern of the 
Penrose tiling (Fig. 2b) can be indexed by five vectors 
(arrows) d *'~ (i < 5) written in the figure. These are i 
regarded as the projection of the unit vectors of a lattice 
in 5D space onto the 2D external space. One of them 
is expressed by the integral linear combination of the 
other four because ~--]~i= i d i = 0. Therefore, there are 

infinitely many sets of Miller indices h 1 h2h3h4h 5, which 
give the same position: the indices h~lh'2h~td4h~ and 
h I h2h3h4h 5 give the same position in the external space 
if h' i = h i + m with an integer m for all i. This means 
that the lattice points ~--~=t h~d~" s , and ~--~i=l hidi may 
be different in 5D space but they are projected onto 
the same position. These structure factors have to be 
summed in order to obtain the intensity of the Penrose 
tiling. Similarly, dodecagonal patterns can be indexed 
with six unit vectors (arrows) shown in Fig. 2(c) but only 
four of them d~ '~ (i = 1,2, 3, 4) are independent. Two 
of them are expressed by integral linear combinations of 

td*" = d . . . . .  *" *" *" the other two ~ s 3 - d l  , d6 - d4 - d 2  ). Thus, 
without loss of generality, the four independent vectors 
d *~ (i = 1, 2, 3, 4) can be regarded as the projection of 
the unit vectors d~' in a 4D reciprocal lattice. 

Since the diffraction pattern shows the noncrystallo- 
graphic point symmetry in the present case, we can con- 
struct a4 x 4 representation of the noncrystallographic 
point group based on the unit vectors d*. The octagonal 
group D s is generated by an eightfold rotation C 8 and 
a mirror a (which interchanges d~' and d~ and d~ and 

/" 1.~ ! I _ I 

" , \  / 

~ - ~ . ~ _ .  

(a) (d) 

(b) (e) 

,/// ~, 
/ 

• , . . . . . . . . . . . . .  ~-~ ~ . . . . . . .  ~ 

(c) ( f )  

Fig. 9. The projection of the unit vectors of polygonal reciprocal 
lattices in 4D space. The external components of the unit vectors of 
(a) ~x:tagonal, (b) decagonal and (c) dodecagonai lattices and their 
corresponding internal space components, (d), (e) and ( f ) .  
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d~), the representations of which are given by 

R(c ) = 

0 1 0 
0 0 1 
0 0 0 

- 1  0 0 

0 
0 
1 ' 
0 

(11) 

[ 00 
R ( a ) =  0 0 1 0 (12) 

1 0 0 " 
0 0 0 

Similarly, the representations of n-fold rotations C n 
(n = 10 and 12) for decagonal and dodecagonal groups 
R(DI0 ) and R(DI2 ) are [010 

R(Cm ) = 0 0 1 
0 0 0 ' (13) 

- 1  - 1  - 1  - 

[°l°i] R(C,12)= 0 0 1 (14) 
0 0 0 " 

- 1  0 1 

All elements of the group can be written as C~aJ (i = 
0, I . . . . .  n - l ,  j = 0, 1) provided that C ° = or ° is the 
identity operator E. The orders of D 8, D10 and Di2 are 
16, 20 and 24, respectively. The representation for the 
mirror, which interchanges d~ and d~ and d~ and d* 3' 
is the same as in the octagonal group. 

These representations are reducible. In the dihedral 
group generated by the n-fold rotation and the mir- 
ror, there are 2 + rrt [m = ( n -  1)/2] irreducible 
representations for n odd, two of which are 1D and 
the others are 2D. This is not relevant in the present 
case but we discuss this first for application to the 
pentagonal quasicrystals discussed later. The first I D 
irreducible representation is the identity representation, 
where R I (C,~) = 1 and R l(o) = 1. The other I D repre- 
sentation is given by R~(C,,) = 1 and R~(o') = -1 .  (The 
superscript stands for the dimension of the irreducible 
representation.) The 2D representations are given by 

"st % (k = 1,2 . . . . .  m) (15) 

R ~ . ( o ) =  [a q l1 1|0 ( k = l , 2  . . . .  . m ) ,  (16) 
/ 3 

where c k and s t. are cos(27rk/n) and sin(27rk/n). The 
representations for the other operations are obtained by 
the multiplication of these. 

On the other hand, when n is even, there are four 1D 
representations, which are (Rlk(Cn),R~(cr)) - (1, 1), 
( 1 , - 1 ) ,  ( - 1 , 1 )  and ( - 1 , - 1 )  for k = 1, 2, 3 and 
4. The 2D representations are given by (15) and (16) 
with m = ( n -  2)/2. From the characters of the 
4 × 4 representations and the characters of D 8, Dl0 and 
Dl2 in Tables 4-6, they are reduced to two irreducible 
representations R~ and R3 2 for n = 8 and n - 10 and 
R~ and R~ for n = 12. If we use the orthogonal basis 
in the 2D external space, we have R, z for all cases. 
From the projection-operator method or inspection, we 
can obtain the transformation matrix between the basis 
vectors of each irreducible representation and the unit 
vectors d*. The latter is based on the fact that the basis 
vectors of the different irreducible representations are 
orthogonal to each other. The unit vectors d~ (j -- 1, 
2, 3, 4) in the octagonal, decagonal and dodecagonal 
lattices are expressed in terms of the basis vectors of the 
corresponding irreducible representations a i (i < 4) as 
follows, where a i . a j  = ~ij owing to the orthogonality. 

d*. 3 -- ( a * / 2 ) [ c ( j - l ) a l  "}- 8 ( j - l ) a 2 ]  

"k- ( a * t / 2 ) [ c 3 ( j _ l ) a  3 + 8 3 ( j -  l )a4]  

(octagonal) 

dj  = (a*/51/2)[c(j_l)a, + 8(j_ , )a  2 

n t- (a*t/Nl/2)[c2(j_l)a 3 -Jr- 82(j_ I)a4] 

(decagonal) 

d~ = (a*/2'/2)[c(j_l)a, + s(j_,)a2] 

+ (a*t/21/2)[cs(j_l)a 3 + ss(j_l)a4] 

(dodecagonal). 

(17) 

(18) 

(19) 

Here, a* and a*' are the lattice constants of the 4D 
reciprocal lattice in the external and internal spaces. 
Since the scaling in the internal space is physically 
meaningless, a*' is often taken to be equal to a* (Fig. 
9). It is easily checked that the a i a r e  the basis vectors 
of the irreducible representation mentioned above, since 
M - I R M  becomes a 2 + 2 block-diagonal matrix for 
any element of the group, where the matrix elements of 

4 M are defined by d*. = Y~j-I Mijaj" Several different 
definitions of the lattice constant a* are possible but the 
factors 1/2, 1/5 I/2 and 1/21/2 introduced in (17)-(19) 
are chosen so that the lattice constant a* corresponds to 
that of the nD (n - 4, 5, 6) hypercubic lattice when 
(3,* --  6t *t. 

The selection of the unit vectors d7 is not unique as in 
normal crystals. In order to avoid this, the reduced cell is 
used for the normal crystals. (Consider the monoclinic 
lattice for example.) This is, however, not applicable 
to quasicrystals because the scale in the internal space 
is physically meaningless, as mentioned above. As a 
result, there is no criterion that selects a particular set 
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Table 4. Characters of irreducible representations of 
the octagonal group Ds 

t 
r~ = C8,  ;:t = cr . \ is the character of  the representations with respect 
to the basis vectors of  the 4D octagonal  lattice. 

4 z 2o 2~ 2 2o  3 ¢~ 4,4 

RIi ! 1 1 I I 1 

R~ 1 1 ! 1 ! - 1  

R~ ! - 1  1 - 1  1 1 

R~ 1 - I  I - I  ! - 1  
R~ 2 2 I/2 0 - 2  I/2 - 2  0 

R~ 2 0 - 2  0 2 0 

R~ 2 --2 I/2 0 2 I/2 - 2  0 

\ 4 0 0 0 - 4  0 

4 ( t  .J 

1 

- 1  

- I  

1 

0 
0 
0 
0 

of unit vectors among infinite sets of unit vectors span- 
ning the same reciprocal lattice. These sets of vectors 
are related by the similarity transformation. Other unit 
vectors d~' related by the similarity transformation are 
given by d ~ ' =  y~,4. ,(S)~.~d~, with an integer m and 
the similarity transi~ormation matrices 

S = 

1 1 0 - 1  
1 1 1 0 

0 1 1 1 
- 1  0 1 1 

(octagonal) (20) 

S = 

01] 
1 1 - 1  

1 1 0 

0 1 0 

(decagonal) (21) 

S = 
i 0 0 - 1  1 0 0 

1 1 1 
0 1 1 

(dodecagonal),  (22) 

where the tilde means transposition. The new represen- 
tations of t h e p o i n t  group based on unit vectors d~' 
are g i v e n b y  S " R S  -''~. The set of  similarity transfor- 
mations S "~ ( - ~  < m < e c ) c o n s t r u c t s  a group 
that leaves the matrix group generated by R(C,,) and 
R(cr) invariant. This set is called a normalizer. If  it 
leaves each element in the matrix group invariant, it 
is called a centralizer. The matrix S and .its inverse 
matrix are generators of  the centralizer and normalizer 
for the octagonal and decagonal cases and those of the 
normalizer for the dodecagonal one. The generators of  
the centralizer for the dodecagonal group are given by S 2 
and its inverse matrix (Janssen, 1992). The normalizer 
and the centralizer are related to the self-similarity of  
quasiperiodic tilings and equivalence relations of  space 
groups as shown later. 

The new unit vectors d* '  have an external space i 
component smaller by a factor "r - m  and an internal 

Table 5. Characters of irreducible representations of 
the decagonal group D /o 

r = (!  + 51 /2 ) /2 ,  c~ = C t o ,  ;t = cr'. \ is the character o f  the 
representations with respect to the basis vectors of  the 4D decagonal  
lattice 

z 2a 2a 2 203 2~ 4 

R{ I 1 ! I 1 
R~ 1 ! 1 1 1 
R I~ ! -1 I -1 1 

R I I -1 1 - I  I 
R~ 2 r r -I  --r - t  --r 

"~ --1 --I 
R 2 2 r - - r  - - r  r 

R~ 2 - r  -t  - r  r r -I  
R~ 2 - r  r r - - r  

\ 4 l --1 ! --1 

c~ 5 5 4 5r~.4 

I 1 I 

I - I  - I  

- I  I - I  

- I  - I  I 

-2  0 0 
2 0 0 

-2  0 0 
2 0 0 

- 4  0 o 

Table 6. Characters of irreducible representations of 
the dodecagonal group D/2 

! 

n - -  C I 2 ,  4 = a . \ is the character of  the representations with 
respect to the basis vectors o f  the 4D dodecagonal  lattice. 

z 2(~ 

R{ 1 i 
R~ I 1 
R l~ 1 --i 
R4 t 1 -1 
R~ 2 31/2 

R ;  2 I 

R~ 2 0 
-) 

R ]  2 - I  

R~ 2 --3 I/2 

\ 4 o 

,.) 

- 2  
- I  

1 
2 

2~ 3 2~ 4 2~ 5 

i 1 i 

1 I 1 

- !  ! - I  

- - i  ! - -1  I 

0 - I  -3  I/2 -2  

--2 -1 1 2 
0 2 0 --2 
2 --1 - i  2 
0 --1 3 t/2 -2 
0 -2 0 -4 

6 
~ 6 4 6~ 4 

I I 1 

I --1 - - I  

I I - - I  

- - I  1 

0 0 
0 0 
0 0 
o 0 
0 0 
0 0 

component  larger by "r ' ' ,  where the similarity ratio T 
is 1 + 2 1 / 2 ,  (1 + 5 1 / 2 ) / 2  or (1 + 3 1 / 2 ) / 2 1 / 2  for the 
octagonal, decagonal or dodecagonal lattice. The simi- 
larity transformation depends on lattice types (Bravais 
lattices) for 6D icosahedral lattices as shown below. It is, 
however, known that only the primitive lattice is present 
in the 4D octagonal, decagonal and dodecagonal lattices 
(Brown, Btilow, Neubtiser, Wondratschek & Zassenhaus,  
1978). For real polygonal quasicrystals in the 3D exter- 
nal space, we have to consider 5D lattices. It is known 
that the body-centered lattice exists in 5D octagonal 
lattices (Janssen, 1986; Rabson, Mermin,  Rokhsar  & 
Wright, 1991). The external and internal components  
of unit vectors in direct lattices can be expressed in a 
similar form for the octagonal case but have different 
forms for the others (see Fig. 10 and §5.2). 

4.2. Icosahedral quasicrystals 

The first quasicrystal found in the A1-Mn system 
showed icosahedral symmetry,  which needs six unit 
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vectors to index the diffraction pattern. They are defined 
by Duneau & Katz (1985), Elser (1985) and Janssen 
(1986) as follows. 

d~ = (a* /2 )a  3 + (a* ' /2 )a  6, 

d* = (a*/2)[(cia  , + 8ia2)8 q- ca3] 

+ (a*'/2)[(c2ia4 + 82ias)s - -  ca6] 

(i = 2,3 . . . . .  6), 

(23) 

representation of  the icosahedral point group is obtained 
by using d~ e. The 6D representations of  the generators 
are 

i10 °°°° °01 0 0 1 0 0 0 

R ( C s ) =  0 0 0 1 0 0 (24) 
0 0 0 0 1 0 

0 0 0 0 
1 0 0 0 

where c i = cos(27ri/5),  s i = sin(27ri/5), c = cos 0 = 
1 /51 /2 ,  s = s in0,  a* is the lattice constant of  the 
reciprocal lattice and a*' is that of  the internal space (Fig. 
11). The vectors a 1, a 2, a 3 represent the unit vectors of  
the external space and a4, a5,  a 6 those of the internal 
space. The icosahedral group is generated by a fivefold 
rotation C 5, a threefold rotation C 3 around a fivefold 
and a threefold axis of  the regular icosahedron (Fig. 
12) and the inversion 1. The external components of d~ 
are along six fivefold axes of  the icosahedron. The 6D 

(a) (d) 

(b) (e) 

R(c~) = I 
O! 0 0 0 0 1 

0 0 0 0 0 
0 0 0 1 0 
0 - 1  0 0 0 
0 0 - 1  0 0 
1 0 0 0 0 

(25) 

Here, C 5 is the fivefold rotation around d T and C 3 
the threefold rotation around d T + d~ + d~ [Fig. 
11]. All the elements of  the group are given by 
( C s ) i ( C 2 ) J ( c ~ ) k ( c 3 ) l ( I )  m with 0 _< i _< 4, 0 _< 
j , k , m  _< 1, 0 _< 1 _< 2, where C 2 = C 3 C  5 and 
C~ = (C3)2C5 and the matrix elements of  I are 
- 6 i j  (1 < i , j  < 6). 

1 

(a) 

3 

2 5 

(b) 

Fig. 11. The projection of unit vectors of the icosahedral lattice in 
6D space into (a) the external and (b) the internal space. The unit 
vectors of the reciprocal lattice are parallel to the corresponding 
unit vectors shown here. 

(c) (.l) 
Fig. 10. The projection of the unit vectors of polygonal lattices in 4D 

space. The external components of the unit vectors of (a) octagonal, 
(b) decagonal and (c) dodecagonal lattices and their corresponding 
internal space components, (d), (e) and (f). 

Fig. 12. The regular icosahedron. The fivefold (threefold) axis passes 
through the center of the icosahedron and a vertex (center of a 
triangle). 
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Table 7. Characters of irreducible representations oJ 
the icosahedral group Y 

7- = ( I  + 5 J / 2 ) / 2 ,  (~ = C 5, l:t = C 3. \ is the charac te r  o f  the 
representa t ions  with respect  to the basis  vec tors  o f  the 6D icosahedral  
lattice. 

z 12o 12~ 2 20~;~ 15(~:4 

I 
R I I ! I 1 ! 

R~ 3 - - r  - I  7- 0 - - I  

R 3 3 7- _ 7 - - I  0 - 1  _ 
R~ 4 - 1  - !  1 0 

5 
Rj  5 0 0 - i  1 

\ 6 I I 0 - 2  

This representation is reducible as is clear from the 
character in Table 7 and reduced to two 3D repre- 
sentations, R~ and R~, the basis vectors of which are 
(a], a 2, a3)  and (a4,  a 5, a6) .  The lattice spanned by d~ 
given above is called the primitive icosahedral lattice. 
This has the similarity transformation matrix 33 with 

I S = ~  I 
ll 1 1 1 1 1 1 1 1 - 1  - 1  1 

1 1 1 - 1  - 1  
- 1  1 1 1 - 1  
- 1  - 1  1 1 1 

1 - 1  - 1  1 1 

(26) 

The similarity ratio of S is 7- = (1 + 51/2)/2, so that the 
similarity ratio of the primitive lattice is 7-3 = 2 + 5 ~/2. 
There are two lattices with the similarity transformation 
matrix ~'. These are called the face-centered and body- 
centered icosahedral lattices. The former is seen in 
several icosahedral quasicrystals (Henley, 1988; Ishi- 
masa, Fukano & Tsuchimori, 1988; Ebalard & Spaepen, 
1989). Their reciprocal-lattice points are given by the 

(3 . • 
vectors h = ~-,i lhidi  with hi all even or all odd 

= " 6 h for the former and ~-~i=~ i even for the latter. The 
matrix S and its inverse matrix are the generators of 
the normalizer of the icosahedral point group for the 
face-centered and body-centered lattices and S 3 and its 
inverse are those for the primitive lattice (Elser, 1985; 
Levitov & Rhyner, 1988). 

The projection of all lattice points of 4D polygonal 
lattices or 6D icosahedral lattices covers densely the 2D 
or 3D external space. Therefore, there is always another 
lattice point in the close vicinity of any reflection. How- 
ever, the diffraction patterns of quasicrystals consist of 
discrete diffraction spots. This is because the diffraction 
intensities strongly depend on the internal components 
of their diffraction vectors (Elser, 1985) and a reflec- 
tion having a diffraction vector with a large internal 
component cannot be observed in practice. This will be 
shown later. Thus, we can index all the reflections of 
polygonal or icosahedral quasicrystals by using four or 
six vectors. In real polygonal quasicrystals, there exists 

a period perpendicular to the 2D plane in the external 
space considered above. Then the diffraction pattern in 
the 3D external space consists of several equidistant 
diffraction planes like those in Fig. 2 stacked repeatedly 
along the normal to the plane with the distance c* = 1/c, 
where c is the period (Fig. 25). Thus, we need five 
vectors d~ (i = 1, 2, 3, 4) and d~ = c*a 5, where a 5 is 
the unit vector in the external space that is perpendicular 
to a I and a 2. This means that the polygonal quasicrystals 
discussed above are described as crystals in 5D space. 

5. P o l y g o n a l  t i l ing  

The tiling was considered to be a key to understanding 
quasicrystal structures since the 3D Penrose tiling was 
shown to give a diffraction pattern similar to that of 
i-A1-Mn (Duneau & Katz, 1985). However, the point 
density of the 3D Penrose tiling that gives such a 
diffraction pattern is much smaller than that of i-AI-Mn 
(about 1/4). Therefore, several simple decorations of the 
3D Penrose tiling were considered (Ishihara & Shingu, 
1986). Such an approach was partially successful for 
i-AI-Cu-Li but for most cases the simple decorations do 
not explain the diffraction intensities. On the other hand, 
the high-resolution transmission-electron-microscope 
(HRTEM) images of decagonal quasicrystals clarified 
that the tiling gives the location of atom clusters (Hiraga, 
Lincoln & Sun, 1991; Hiraga, Sun, Lincoln & Matsuo, 
1993). This seems to be true for all quasicrystals. Thus, 
the tilings are still important to determine quasicrystal 
structures and may play the role of the average structure 
for modulated structures, which is first determined in 
the structure analysis. 

There are four methods to obtain a quasiperiodic 
tiling as mentioned previously. We treat three of them 
(DM, PM and SM) because these are shown to be 
equivalent for tiling problems. Another one (IDM) relies 
on the matching rules but there are many tilings without 
simple matching rules and this method cannot calculate 
the diffraction pattern, which is essential for structure 
determination by diffraction methods. The matching 
rules may however be important for the crystal growth of 
quasicrystals (Onoda, Steinhardt, DiVincenzo & Socolar, 
1988) and several tilings derived from the former meth- 
ods have simple matching rules. Some tilings given 
by the IDM have not been derived by other methods 
(Watanabe, Ito & Soma, 1987). The quasiperiodic tiling 
is space filling with primitive tiles. In contrast to periodic 
structures, it needs two or more tiles in order to obtain 
non-crystallographic symmetry. 

5.1. The dual method 

The dual method is applicable to polygonal tilings 
discussed in the previous section and more general 
polygonal tilings or icosahedral tilings. In this section, 
simple derivations of the octagonal Penrose, Penrose and 
Stampfli tilings in 2D space are described. For 2D tilings, 
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the use of complex numbers gives an elegant description 
because a 2D vector can be expressed by a complex 
number (de Bruijn, 1981; Beenker, 1982) but this is 
not employed here since its extension to the 3D tiling 
is impossible. The following derivations of tilings are 
essentially the same as those given by Beenker (1982), 
de Bruijn (1981) and Korepin, G~ihler & Rhyner (1988). 

(a) Octagonal Penrose tiling. This tiling with edge 
length a can be derived from the periodic 4-grid, which 
is given by 

e ~ - x = n  i + T i  ( i < 4 )  (27) 

by dotted lines in Fig. 13(b). It should be noted that this 
is equal to that of the octagonal lattice. The parallel lines 
given in Fig. 13(a) can be regarded as the intersection 
of 3D hyperplanes normal to four unit vectors of the 4D 
octagonal lattice or regarded as the unit-cell boundary at 
each lattice point of 4D space. 

(b) Penrose tiling. The extension of the above theory 
to Penrose tiling is straightforward. [Historically, this 
was first obtained by de Bruijn (1981).] This uses the 
5-grid instead of the 4-grid (Fig. 14a), which is given 
by 

e i . x = n  i + ' y i  ( i < 5 ) ,  (29) 

with an integer n i and the unit vectors in the external 
space 

e* = a*[cos(27ri/8)a~ + sin(27ri/8)a2], (28) i + 1  

w h e r e  a i ( i  - -  1, 2) are the unit vectors of 2D external 
space and ~'i represents the phase shift of the parallel 
lines shown below. The vectors x fulfilling (27) construct 
the 4-grid, which is a set of parallel lines (grid lines) 
normal to the four directions specified by e~' (i < 4) 
(see Fig. 13a). It is noted that from (17) e~ (i < 4) are 
given by 2d~ '~-. Let y be a vector in an area enclosed by 
several lines. This is a triangle or a convex polygon in 
the present case. Let the point y be between the nith 
and (n i + 1)th line along the ith direction e~. Then 
we can assign four integers, n i = ke~ ' . y  - 'Yi], to 
the area where kzJ is the largest integer less than or 4 
equal to z. Plot a point at r 0 = )-2i=i niei, where e i 
are the external components of the unit vectors of the 
4D octagonal lattice d~ for any i [see (30)]. Join a 
line with the length a = I/a*. These procedures give 
the octagonal Penrose tiling with the edge length a 
(Fig. 13b). The transformation that transforms an area 
enclosed by grid lines into a point given above is called 
the dual transformation. This is also a transformation that 
transforms a point into an area. The same tiling can be 
obtained based on this principle. Consider the crosspoint 
y '  with the rqth and njth grid lines along the ith and 
j th directions and let the cross point be between the n k 
and n k + 1 grid line (k ~ i, k ~ 3) for other directions. 
Then we assign four integers, n i = [e* • y '  - "TiJ to 
the point and plot a rhombus with the comers at r 0, 
r 0 + e i, r 0 + e j, r 0 + e i + ej. These two algorithms 
work well when the grid has no singular grid points 
where more than two grid lines cross but the second 
one seems to be easier for programming. If the grid 
includes singular points, however, the latter algorithm 
does not work. For the singular point, we have to place 
a polygon, the shape of which depends on the singularity. 
In the present case, there are singular grid points along 
four directions parallel to e i ( i  _< 4 )  when 3'i = 0. 
We can shift the singular points to another place with 
non-zero 'Yi" The octagonal Penrose tiling has a self- 
similarity with the similarity ratio of 1 + 21/2 as shown 

where e~" (1 < i < 4) are given by 5d~"/2 of (18) and 
, r - - - , 4  - -  , - -  

e5  = - -2 . . . , i=1 ei" The dual transformation leads to the 
tiling consisting of the rhombi, the edge vectors of which 
are a pair of d~ (i _< 5) in (31). Their edge length is 
2a/51/2. In this case, a different tiling with pentagonal 

• • f • 5 symmetry is obtained or a different 7 = ~ i  l "Yi within 
0 < "/ < 1/2 and decagonal tilings are obtained when 
7 -- 0 or 0.5. The other values of "7 lead to tilings 
locally isomorphic to some tilings with "7 within this 
range. The local isomorphism is defined as follows. 
If any area of one tiling is completely overlapped by 

>"x'X,¢" >< ' ">;"gF>r~¢" ~" , , "  x" 
_)k,>q)<,,;<,]; < ,~RPq 2k,~./x,,~ 
> ~ x,,, ~ G ¢" s< ~ d" x,,',~/, / ~ Q 

} x . , ' ~ A ~ \  ~ b , ' % , ~ , / v  - , )xv"  
>," <'3<'~q"!X 3(  x~3 , '~ ' )<  x 

,x S % ~ 2 k, ~,,~,/%,-4 2 k, x , 

_>~..K. 7 , .  <. ~ )(, >~ >:, ;K, ~ ) >,,', ~,, ~ A / ~,,'x,,-',~, % A / ~ ' X  
x ,,- x ,< :< x > - <  

> x,. x,.. 7 ,. \..x,.,; %.x. / v \ ) x , /  
~>."'~ M % "" ,<" "x'";.,/" x " %5"d 'x ""a 

,,~ ,;c, x >:...4.p<,, q x ,>:..,>q > 
( a ) 

(b) 
Fig. 13. (a) The 4-grid and (b) its dual pattern. The pattern plotted in 

dashed lines shows a self-similar pattern. 



AKIJI YAMAMOTO 529 

shifting and/or rotating on the other, these two are 
locally isomorphic. These tilings are called Penrose ('7 - 
0) and generalized Penrose tilings ('7 ~- 0), two of which 
are shown in Figs. 14(b) and (d). When % = 0 (i <_ 5), 
the singular grid points appear at the origin (Fig. 14a) 
and along five directions perpendicular to e~. These 
points can be shifted by choosing nonzero '7~ with 
~-~=~ % = 0. The similarity ratio of these tilings are 
(1 + 5~72)/2 and its square as denoted by dotted lines 
in Figs. 14(b) and (d). They correspond to the similarity 
ratios of the 4D and 5D decagonal lattices. Note that 
the decoration of large tiles are the same for all cases 
and independent of the local environment in Fig. 14(b), 
while it depends on the local environment in Fig. 14(d). 

The derivation of the tiling is related with the 5D 
decagonal lattice. The parallel lines given by (29) can be 
regarded as the intersection of 4D hyperplanes normal to 
five unit vectors of the 5D decagonal lattice with the 2D 
external space similarly to the octagonal Penrose tiling. 

(c) Stampfli tiling. This is obtained from a modified 
DM (Korepin, G~ihler & Rhyner, 1988). In this case, 
the grid is not a set of parallel lines but the double 
honeycomb net (Fig. 15a), in which a hexagon is located 
at the lattice points of double hexagonal lattice, one of  

which is rotated by 30 ° from the other. One hexagonal 
(reciprocal) lattice is spanned by e~" (~ = 1, 3) and the 
other by e.*, (i - 2, 4), where e~' are given by 3 ~/2d~ *~' 
of (19). This is an extension of the DM mentioned 
above. Another extension of the DM has been made by 
Socolar, Steinhardt & Levine (1985) as shown below. 
We call this the generalized dual method according to 
Socolar et al., though the former is called the generalized 
grid projection method by Korepin, G~ihler & Rhyner 
(1988). In this method, each area enclosed by lines 
of two honeycomb nets is also a convex polygon. 
When such an area belongs to the hexagons centered 
at ~'~e~ .+4 n3e3 and n2e 2 + /~,4e4 , we p lo t  a po in t  
at r = )--~=~ ztiei, where e i = d~'. The vectors d~ ~ are 
the unit vectors of the 4D dodecagonal lattice in the 
direct space which is given in (34). The Stampfli tiling 
is obtained by joining points with a distance 2a/6 ~/2 
(Fig. 15b). The double honeycomb net appearing in the 
present case is not related to the unit-cell boundaries 
in 4D space but the union of boundaries of Voronoi 
cells of two hexagonal lattices orthogonal to each other 
(Korepin et al., 1988). As a result, the tiling consists of a 
rhombus, a square and a triangle, in contrast to the tilings 
given above. Such an extension has also been made for 

i 

(a) 

~ pc:  X~ < 

(~') 

(b) (d) 

Fig. 14. (a) The 5-grid with -i = 0 and (b) its dual pattern. The corresponding patterns in the case o f .  = 0.1 are shown in (c) and (d). 
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the icosahedral tiling, where boundaries of the Voronoi 
and the Delaunay cells of the face-centered icosahedral 
lattice in 6D space are taken (see §6). 

5.2. The projection and section methods 
The equivalence of the DM and PM was first shown 

by de Bruijn (1981) for the Penrose tiling and given 
for general quasiperiodic tilings consisting of rhombi 
by G~ler  & Rhyner (1986). Several important tilings 
obtained from the generalized dual method (GDM) are 
also given by the SM or the PM. However, the general 
proof of equivalence is not known in this case. The 
difference between the PM and the SM is mainly in the 
concept. The former gives a point in the external space 
by the projection of an nD lattice point when the unit 
cell belonging to that lattice point intersects the external 
space. On the other hand, the latter uses the occupation 
domain at each lattice point extended along the internal 
space which is the projection of the unit cell (Bak, 1986; 
Janssen, 1986). Then the same point is obtained as an 
intersection of the occupation domain with the external 
space. This method provides a systematic treatment of 
all quasiperiodic structures including quasicrystals, mod- 
ulated crystals and composite crystals be¢ause the latter 

(a) 

two are usually treated as an intersection of an nD crystal 
with the 3D external space as mentioned in §4. Another 
difference is rather terminological. The PM is used for 
the tiling, which is often derived from a lattice in a 
dimension higher than the necessary dimension, while 
the SM is used for general quasiperiodic structures which 
are obtained from any kind of occupation domains but 
in space with the minimal dimension. Therefore, these 
two methods are almost equivalent for tiling problems. 
In the calculations of diffraction patterns or the point 
density, the latter has to be used. 

One of the merits of the SM is that it gives an 
elegant way of giving diffraction patterns (Duneau & 
Katz, 1985; Katz & Duneau, 1986). In the PM, we 
need only a projection of the unit cell of an nD lattice 
onto the (n - 2)D internal space for polygonal filings 
and the (n - 3)D internal space for icosahedral filings. 
This is called a window. In the SM, the intersection of 
the projected unit cell with the minimal internal space 
has to be known. This is called an occupation domain 
(acceptance domain, atom surface). The window and 
the occupation domain are the same for the octagonal 
Penrose tiling but different for the Pem'ose tiling. The 
former is derived from 4D crystals as shown below and 
its internal space is 2D, which is equal to the minimal 
dimension given in the previous section. On the other 
hand, the Penrose tiling is obtained from 5D space (5D 
description) by the PM. Then the internal space is 3D 
but the minimal dimension is 2, which corresponds to 
a 4D description of the same structure (Janssen, 1986; 
Ishihara & Yamamoto, 1988). 

The unit vectors of the n-gonal (n = 8, 10, 12) lattices 
are expressed in terms of their external and internal 
space components. In the following, cj and sj represent 
cos(2a-j/n) and sin(27rj/n). 

(a) Octagonal Penrose tiling. This is obtained from 
the 4D octagonal lattice, the unit vectors of which are 
reciprocal to (17) and given by 

(b) 

Fig. 15. (a) The double honeycomb net and (b) its dual pattern 
(Stampfli tiling). 

dj+ 1 = a[cja, +sja2]+a'[c3ja3+s3ja4] (0 ~_ j <_ 3). 

(30) 

4 
In the PM, a lattice point n = }-'~i=t nidi is plotted 
when the unit cell at n intersects the external space. 
Consider the 2D external space passing through the 
point g = )--~4= l 7i di- Then, the internal component of 

4 i n - g, which is Y'~i=l ( h i -  "Yi)di, is in the polytope 
(polygon) that is the projection of the unit cell at n 
onto the internal space. Thus, we have to know the 
projection of the unit cell of the 4D octagonal lattice onto 
the 2D internal space. This can be done by projecting 
each corner of the unit cell onto the internal space 
and joining the outermost points. This is the regular 
octagon shown in Fig. 16(a). Thus, the window or the 
occupation domain of this case is the regular octagon. 
It is convenient to consider the body center of the unit 
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4 
cell, which is located at n c = }--]~i=1 (hi  + 1/2)di .  Then 
the same condition can be expressed as follows. When 
the internal component of - n c + g is in the octagon 
centered at the origin, n is projected onto the external 
space. The point appears at the external component of 
n. In the SM, the point is regarded as the intersection of 
the occupation domain, which is located at each lattice 
point of the 4D lattice and extends to the internal space, 
with the external space as shown in Fig. 5(c). 

(b) Penrose tiling. The  difference between the PM 
and the SM becomes clear in this case. This is obtained 
from the 5D decagonal lattice in the former, which has 
unit vectors. 

d j  = (2a /51 /2)[c ja l  + sja2] + ( 2 a ' / 5 1 / 2 )  

x [c2ja 3 + s 2 j a 4 ] + a ' a  5 (1 _< j_<5) ,  (31) 

where a 1 and a 2 are the unit vectors of the external 
space and a3, a 4 and a 5 are those of the internal 
space. Let the 2D external space pass through the 

5 d point g 5  ~ i =  1 "7i . i and the center of the unit cell be 
n c = 2 . . J i = l [ ? Z i - t - 1 / 2 ) d i .  The window is the rhombic 

(a) 

A B G 

D E F 
(b) 

Fig. 16. (a) The  occupat ion domain  o f  the octagonal  Penrose pattern. 
The  points generated by the subdomains  A - F  have  different local 
envi ronments  as shown in (b). 

icosahedron with the edge length of a t (Fig. 17). If 
the internal component of - n  c + g is in the rhombic 
icosahedron centered at the origin, the lattice point 

5 
n = ~~i---1 n id i  is projected onto the external space. 

In contrast to the PM, the SM uses the 4D decagonal 
lattice, since this is enough to index the diffraction 
patterns as shown in §4. The unit vectors are reciprocal 
to (18) and are given by (Janssen, 1986; Pavlovitch & 
K16man, 1987; Yamamoto & Ishihara, 1988) 

d~ = (2a/51/2)[(c j  - 1)a, + sja2] + (2a ' / 5  ' /2)  

× [ ( c 2 j - 1 ) a  3 + s 2 j a 4 ]  ( l _ < j < 4 ) .  (32) 

The 4D space is a 4D hyperplane of the 5D space 
discussed above, which is normal to a 5 and passes 
through the origin of the 5D space. The vectors d '  i = 
d i - d  5 (1 < i < 4) span the 4D lattice since these 
have no a 5 components. The vectors d~ = ~-]~=l di and 
d~ (i < 4) span the sublattice of the 5D decagonal lattice. 
The determinant of the transformation matrix T shown 
below is 5, so that there are five lattice points of the 
original lattice in the unit cell of the sublattice. The 
transformation matrix is given by [0000 0 1 0 0 - 1  

T =  0 0 1 0 - 1  (33) 
0 0 1 - 1  
1 1 1 1 

The windows located at these five points intersect with 
the 4D hyperplane at different positions. Their 4D coor- 
dinates with respect to d~ (i _< 4) are (i, i, i, i ) / 5  (i = 
0, 1, 2, 3, 4). The intersections of the windows at these 
points are the occupation domains. They are shown in 
Fig. 18 for the cases "7 = 0 and 0.1. These are the 
occupation domains for the SM. Therefore, in the SM we 
use five occupation domains placed at (i, i, i, i ) / 5  (i = 
0, 1, 2, 3, 4), one of which reduces to a point for 
"7 = 0. In this method, we consider five points in 
the unit cell at n = }--]4 1 ?2 d ( ,  that is n + x i (i = 

J =  4 3 . ! • 
0, 1 . . . . .  4), where x i = )--]~j-1 (z/5) d~. If the internal 
component of - n  - x i is in the ith occupation domain, 

Fig. 17. The rhombic icosahedron appearing as the window of the 
Penrose pattern. 
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the occupation domain intersects the external space. 
Then, we plot its external component. In this case, the 
effect of "y mentioned above is reflected in the shape of 
the occupation domains. 

(c) Stampfli tiling. This is obtained from the 4D 
dodecagonal lattice with the unit vectors 

dj+,  = (2a/61/2)[c(j_l)al + s(j_l)az] + (2a'/61/2) 

X [C5( j_ l )a3  n t- 8 5 ( j _ l ) a 4 ]  ( j  = 0, 1) 

d 3 +  1 = ( 2 o ~ / 6 l / 2 ) [ c ( j + l ) a  I -t- 8 ( j + l ) a 2 ] - t -  (2a'/61/2) 

X [ c 5 ( j + l ) a  3 n t- 85( j+ l )a4]  ( j  = 2 , 3 ) .  
(34) 

As stated above, the occupation domain or window of 
this tiling does not come from the unit cell but from 
the union of the projection of Voronoi cells of the two 
hexagonal lattices. This is the dodecagonal star which 
is the union of two hexagons rotated by 30 ° around the 

@ 
(a) 

(b) 

@ 
(c) 

Fig. 18. The occupation domains of Penrose patterns. The rhombic and 
pentagonal Penrose patterns are obtained from occupation domains 
in (a) and (c), while the generalized Penrose pattern with 5 = 0.1 
is given by (b). The domains A - E  are located at (i, i, i, 0 / 5  (i = 
I, 2 . . . . .  5) of the 4D decagonal lattice. 

Fig. 19. The occupation domain of the Stampfli pattern. This is a 
union of two hexagons. 

common center (see Fig. 19). In this case, the space 
used is minimal, so that the difference between the PM 
and the SM is not essential. The methods used for the 
octagonal Penrose tiling are applicable. 

(d) Other polygonal tilings. The pentagonal Penrose 
tiling is obtained from one decagonal occupation domain 
at the origin (Niizeki, 1991). The occupation domain is a 
decagon which is the projection of the Voronoi cell of the 
4D decagonal lattice (Fig. 18c). Another decagonal tiling 
(binary tiling) is obtained from three occupation domains 
at 4-(1, 1, 1, 1)/5 and (0,0,0,0),  where the pentagonal 
rhombic stars and a decagon are situated (Zobetz, 1992) 
(see Fig. 20). The dodecagonal Penrose tiling consists 
of three rhombi with equal edge length or a skinny 
rhombus, a triangle and a square (Ishihara, Nishitani & 
Shingu, 1987). This is obtained from the 6D dodecago- 
nal lattice or from a direct extension of the 5D case 
given above (Socolar, 1989). Its occupation domains 
in 4D representations consist of four triangles and four 
squashed hexagons with threefold symmetry. They are at 
the special positions (0, 1, 0, 2)/3 and (1, l, 2, 2)/3 with 
the site symmetry 3m and other equivalent positions. 

(a) (b) (c) 
Fig. 20. The occupation domains of the binary tiling. The domains 

in (a), (b) and (c) are located at - ( l ,  i, 1, I)/5, (0, 0 ,0 ,0)  and 
(1, I, 1, 1)/5 in the 4D decagonal lattice. 

Fig. 21. The occupation domains of the dodecagonal Penrose pattern. 
The domains A and E are independent. The others are related to 
these by symmetry operations. 
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Four triangles or hexagons are related to the fourfold 
rotation (Fig. 21). Another extension to generalized 
2D polygonal tilings has been made by Whittaker & 
Whittaker (1988) using the PM. They are tilings with 
n-fold (n _> 7) symmetry and obtained from nD 7~-gonal 
lattices. Because of the equivalence of the PM and the 
DM, this is also obtained from the corresponding n-grid 
by the DM. In order to obtain such tilings, the DM seems 
to be easier than the SM. The occupation domains of 
typical tilings are given in Tables 13 and 14. 

6. I c o s a h e d r a l  t i l ing  

The 3D quasiperiodic tilings can be obtained by a 
method similar to that described above. This uses a 
grid that consists of equidistant 2D planes normal to 
several directions. In order to obtain the tiling with 
icosahedral symmetry (icosahedral tiling), we use six 
vectors e~' (i <_ 6) that point to six corners of the regular 
icosahedron (Figs. l la and 12). 

or double 6-grid. It is known that this has the similarity 
ratio of 2 + 51/2 (Ogawa, 1985), which is equal to that 
of the 6D primitive icosahedral lattice. 

(b) Socolar tiling. Another important 3D icosahedral 
tiling has been derived by the GDM (Socolar, Steinhardt 
& Levine, 1985), where a quasiperiodic grid is used 
instead of the periodic grid described above. This was 
shown to have the similarity ratio of 7- -- (1 + 51/2)J2, 
which suggests that the tiling is related to the face- 
centered or body-centered icosahedral lattice. It was 
shown recently that this is the face-centered icosahedral 
lattice (Danzer, 1989; Danzer & Talis, 1993; Kramer, 
Papadopolos, Schlottmann & Zeidler, 1994). The gener- 
alized icosahedral tilings are obtained by 

e ~ ' . x = n i + c ~ + 7 - - l [ n i T - - l + f l J  ( i_<6) (36) 

and the dual transformation given in (a). When (~ = 
7_-1, fl = _ 1/2, the tiling has a similarity ratio of 7- and 

6.1. The dual method 

The derivation of two typical icosahedral tilings by 
the DM is discussed in the following. 

(a) Three-dimensional Penrose tiling. This is derived 
from the 3D 6-grid 

e * . x = n i + 7 i  ( i_<6) (35) 

by a similar method. The vectors e* are 3D and are 
given by 2d *c of (23). In this case, the grid is a set 
of equidistant 2D planes normal to e* (i _< 6). There 
are 3D areas (polyhedra) enclosed by planes. Let the 
vector y be in the polyhedron that is between nith and 
n~+lth planes for the ith direction. Then we assign 
six integers n i = t e * . y  6 7~J (i _< 6) to the area. We 
plot a point at r 0 = ~--]~i=1 niei and join points with 
the distance a = [ei l, where e i = d~i, which are the 
external part of the unit vectors of the 6D icosahedral 
lattice [see (37)]. In the second algorithm, we assign 
n; = te~ • y '  - 7iJ (i <_ 6) to the cross points y '  of three 

• *,e* ( i C j C k )  anddraw grid planes normal to e i , ej k 
a rhombohedron spanned by e;, ej and e k at r 0. This 
tiling consists of rhombohedra spanned by e;, e), e k 
(i ¢ j ¢ k), which are classified into two shapes shown 
in Figs. 23(a) and (b). It is known that more than three 
grid planes intersect at a point. Such a point is called a 
singular (grid) point. If we choose 7i - 0 for all i, the 
grid includes singular points at the origin and along a 
fivefold axis, where six and five planes intersect. Since 
they appear only on these lines, we can shift these points 
to other places by selecting nonzero 7;. Any 7; leads to 
tilings locally isomorphic to each other. The projections 
of the tilings along the fivefold and twofold axes are 
shown in Fig. 22. Note that Fig. 22(a) is the pentagonal 
Penrose tiling. As shown by Kramer & Neri (1984), this 
is a special case among tilings obtained from the 12-grid 
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(b) 
Fig. 22. The project ions  o f  the 3D Penrose  pattern a long (a) l ivefold  

and (b) twofold  axes.  The former  is the pentagonal  Penrose pattern. 



534 CRYSTALLOGRAPHY OF QUASIPERIODIC CRYSTALS 

is called the Socolar tiling. In this case, there are many 
singular grid points distributed in 3D space in contrast to 
3D Penrose filing. The singular points are classified into 
three cases, sixfold, fivefold and fourfold singular points, 
where six, five and four grid planes may intersect. In this 
case, the second algorithm of the dual transformation 
has to be modified. If the point is the sixfold, the 
fivefold or the fourfold singular point, we have to 
place a rhombic triacontahedron, rhombic icosahedron or 
rhombic dodecahedron instead of a rhombohedron (Fig. 
23). It is known that only the acute rhombohedron (Fig. 
23a) is obtained from the non-singular point. Thus the 
Socolar tiling consists of these four primitive files. 

Since the corresponding SM had not been known for 
the GDM, its diffraction pattern could not be calculated, 
but this problem was solved recently as shown later. 

6.2. The projection and section methods 

The same filings are obtained by the projection 
method or the section method. 

(a) (b) 

(a) Three-dimensional Penrose tiling. This is obtained 
by the PM or the SM from 6D space because the 
minimal dimension of icosahedral quasiperiodic tilings 
is 6 (Duneau & Katz, 1985; Katz & Duneau, 1986). The 
window or the occupation domain is obtained from the 
projection of the unit cell in the 6D icosahedral lattice 
onto the 3D internal space. The unit vectors in the direct 
space are 

d 1 = a a  3 -4- a / a 6  , 

d i = a [ ( c i a  1 q- 8 ia2)8  -4- ca3] 

+ at[(c2ia  4 q- 82ia5)8 -- ca6] (i = 2,3 . . . .  , 6 ) .  

(37) 

The occupation domain is the triacontahedron with the 
edge length a' (Fig. 23c) and each edge is parallel to 
one of d~ (i _< 6). The 3D Penrose tiling consists of 
two rhombohedra with the edge length a. An acute 
rhombohedron has edges parallel to d~, d 2 and d 3 
(Fig. 23a) while an obtuse one has edges parallel to 
d 4, - d  5 and d 6 (Fig. 23b). A part of the 3D Penrose 
tiling can be constructed from four primitive polyhedra, 
the dodecahedral star, rhombic triacontahedron, rhombic 
icosahedron and obtuse rhombohedron (Ogawa, 1985; 
Audier & Guyot, 1988) (see Fig. 23). We call this a 
framework structure. This is obtained from a compli- 
cated occupation domain (Yamamoto, Sato, Kato, Tsai 
& Masumoto, 1994). 

(c) (d) 
(a) 

(e) (f) 
Fig. 23. The occupation domains appearing in icosahedral quasi- 

crystals. (a) Acute rhombohedron. (b) Obtuse rhombohedron. (c) 
Rhombic triacontahedron. (d) Rhombic icosahedron. (e) Rhombic 
dodecahedron. ( f )  Dodecahedral star. 

(b) 

Fig. 24. Two independent occupation domains of the Socolar tiling. 
(a) and (b) are located at (1, 1, 1, 1, 1, 1)/4 and (3, 1, 1, 1, 1, 1)/4 
and the positions equivalent to them by the centering translations 
of the face-centered icosahedral lattice in 6D space. 
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(b) Socolar tiling. This tiling consists of four primitive 
polyhedra as mentioned in §6.1. The Socolar tiling 
can be divided into acute and obtuse rhombohedra, 
since the primitive polyhedra can be divided into them. 
However, any division cannot have the symmetry of 
the primitive polyhedra. In order to divide them into 
several pieces holding such a symmetry, we have to 
use octahedra (or tetrahedra) instead of rhombohedra. 
The 3D tiling (Danzer tiling) with icosahedral symmetry 
was proposed by Danzer (1989), which consists of four 
octahedra (or tetrahedra). It was shown recently that 
part of the Danzer tiling gives the Socolar tiling (Roth, 
1993; Danzer & Talis, 1993). Its occupation domains are 
given by Kramer, Papadopolos, Schlottmann & Zeidler, 
1994). The tiling has the face-centered icosahedral lat- 
tice, which is spanned by d', = ~-~=l Sijdj with 

S = 

I 0 2 0 0 0 0 
0 0 2 0 0 0 
2 0 0 0 0 0 
1 - 1  1 - 1  - 1  1 
1 1 - 1  1 - 1  - 1  

- 1  1 1 1 1 1 

(38) 

The determinant of S is 32. The lattice is equiva- 
lent to a sublattice of the primitive icosahedral lattice 
consisting of lattice points with even (or odd) parity. 
In the following, the vector is represented with re- 
spect to di. There are two occupation domains placed 
at (1 ,1 ,1 ,1 ,1 ,1 ) /2  and (3 ,1 ,1 ,1 ,1 ,1 ) /2 .  These are 
neither the projection of the unit cell nor that of the 
Voronoi cell but are related to the Delaunay cell (Kramer, 
Papadopolos, Schlottmann & Zeidler, 1994). The first 
one is a regular dodecahedron with a corner vector 
( -  1, 1, - 1, - 1, 1, 1)/2 and 19 other corners obtained 
from it by the symmetry operation of the icosahedral 
group. The second one is obtained from the regular 
icosahedron with a corner vector (1, 1, 1, 1, 1, 1)/2 and 
another 11 corners equivalent to it by subtracting a 
tetrahedron sharing a triangle (Fig. 24). A radius on the 
threefold axis is - (1 ,  1, 1, 1 , - 1 ,  1)/2 (Table 14). 

(c) Generalized icosahedral tilings. As seen in §5, 
there is an infinite number of generalized tilings obtained 
from nD (n = 8, 10, 12) spaces. The corresponding 
tilings with icosahedral symmetry are also possible. 
These consist of two rhombohedra as in the 3D Penrose 
tiling. In contrast to it, however, there exist two tiles 
of the same shape having face-to-face contact with each 
other. They are obtained from 12D space by the DM or 
the SM (Yamamoto, 1995). 

7. S y m m e t r y  o f  q u a s i c r y s t a l s  

According to the nD crystallography introduced by de 
Wolff (1974) and formulated by Janner & Janssen (1977, 
1979), the symmetry reflected in diffraction patterns is 

that of the nD crystals. If the crystal has a (hyper-) 
glide plane or a (hyper-) screw axis, it causes a sys- 
tematic extinction of reflections. This is observed in 
several decagonal quasicrystals and is related to the 
non-primitive translation in a symmetry operator of 
nD space, which leaves the nD crystal unchanged. 
The rotational symmetry is obtained from the point 
group of the diffraction pattern, while the non-primitive 
translation is obtained from the extinction rules. In this 
section, we discuss how this is taken into account in the 
model construction for polygonal quasicrystals. 

Real polygonal quasicrystals have a period parallel 
to the n-fold (n = 8, 10, 12) axis. Therefore, we have 
to add one dimension for this direction and consider 5D 
crystals. Let the unit vectors of this 5D lattice be d i (i <_ 
5), the first four of which are given by (30), (32) or (34) 
and d 5 = ca 5. Their reciprocal vectors d* are given by 
(17), (18) or (19) and d~ = c*a 5 (c* = I/c). In §5, the 
2D tilings were considered. A real quasicrystal structure 
may not be the repeated stacking of such filings. The 
first point to be considered is the systematic absence of 
reflections if any. Such an absence of reflections in a 
plane including the n-fold axis was first observed in 
the electron diffraction patterns of decagonal A1-Mn 
and Al-Fe (d-Al-Mn, d-Al-Fe) (Fung, Yang, Zhou, 
Zhan & Shen, 1986; Yamamoto & Ishihara, 1988). We 
consider the diffraction patterns of d-A1-Pd-Mn in Fig. 
25. (d-A1-Mn also shows similar patterns.) It is seen 
in Fig. 25(b) that reflections with h 5 odd are absent. 
The reflection condition can be written as h~ = 2n 
for h I, h 2, h 2, h, I, h 5. This means that there exists a 
(hyper-) glide plane {a'lt}, the rotation matrix of which 
is given by 

= 

0 0 0 -1  0 
0 0 -1  0 0 
0 - 1  0 0 0 

-1  0 0 0 0 
0 0 0 0 1 

(decagonal) 

(39) 

and the non-primitive translation t ( a ' )  = d5/2 = ca5/2. 
This suggests that there exist two groups of occupation 
domains that are related by the glide plane. Note that 
the coordinates are transformed by the rotation with 
the same matrix R(a'). Therefore, if an occupation 
domain is at (x I , :i: 2, :i" 3, x 4, xs), another one must be at 
(-,'1:4, - x 3 ,  - x2, - , r  I , x 5 + 1/2). The latter occupation 
domain is obtained from the former by a ~. In order to 
consider this transformation, the action of the rotation 
operator in the internal space has to be known because 
the occupation domain extends only in the internal space. 
This is given by the reduced matrix R, which is given 
by M~-~RM ~. The matrix M ~ is a 5 × 5 matrix, 

0],  40, 
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where M is the 4 x 4 matrix given in §4. The reduced 
matrix is a 2 + 2 + 1 block-diagonal matrix and the sec- 
ond 2 × 2 matrix transforms the occupation domain. As 
shown in §§5 and 6, the occupation domains of typical 
tilings are polygons, most of which are convex but is a 
polygon with concave parts for the Stampfli tiling. Let 
a comer be a~a~ + a 4 a  4. Then this is transformed into 

t ' "wh ' 4 _IRM • a 3 a  3 + a4a4 ,  ere a i = ~-,k=3 (M ) j k a k  (,j -- 
3,4). The second 2 x 2 part of M-1R(cr')M is given by 

0]l  41, 
which transforms a 3 into - a  3 and  a 4 into itself• Note that 
~r' transforms the occupation domain A of the Penrose 
tiling into D and B into C in Fig. 18(a). Thus, in 
order to obtain the extinction rule mentioned above, 
if A (B) is at (xl,x2, x3, x4, x5), D (C) must be at 
(--X4, --X3, --.Z'2, --371, X5-]- 1/2) (Yamamoto & Ishihara, 
1988). 

As a group including the glide plane, we consider 
the 5D space group PlOs/mmc, which is generated by 
a tenfold screw axis, the glide plane and the inversion• 
The rotation matrix of the tenfold rotation is given by 

I 0 0 0 - 1  ! ]  
l 1 l 1 

R(CLO )=  --1 0 0 0 . (42) 
0 - 1  0 0 
0 0 0 0 

The matrix representation of the inversion is R(I)~j = 
--6ij (i < 5) and that of a '  is in (39). The non-prirmt]ve 
translation of Cl0 is t(C]0 ) = d5/2. The space group 
PlOs/mmc is generated by {Ci0[t(Ct0)}, {a ' l t ( a ' )} ,  
{II0} and lattice translation {Eldi} (i = 1,2, 3,4). In 
particular, the tenfold screw axis and the inversion cause 
the mirror plane perpendicular to a 5 at z = 1/4. 

In many cases, the occupation domains are located 
at the special position of the space group. They are 
invariant under the site-symmetry group, which is a 
subgroup of the point group. The site symmetry restricts 
the shape of the occupation domain, since the shape has 
to be invariant under the site-symmetry group. Consider 
the A, B, C, D domains of the Penrose tiling in Fig. 
18(a), which are located at (i, i, i, i, 5z)/5 (i _< 4), the 
site symmetries of which are D 5. The site-symmetry 
groups are generated by {C51~/d4} (1 <__ i <_ 5) and 
{al0 }, where the rotation matrix of cr is 

I00 i] 0 1 0 
R(cr )=  1 0 0 (decagonal). (43) 

0 0 0 

0 0 0 

The point group can be divided into cosets by using 
the site-symmetry group and the coset representa- 
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Fig. 25. The diffraction patterns of decagonal AI-Pd-Mn. (a) The zero 
layer normal to the tenfold axis. The planes (b) between the axes 
and (c) along the axes are denoted by dotted and solid lines in Fig. 
26(b). The tenlbld axis is vertical in (b) and (c). 
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Table  8. Octagonal space groups in 5D space with 
highest symmetries 

There exist the primitive (denoted by P in the prefix) and body- 
centered (/) lattices. The latter gives the reflection condition for general 
reflections, ~--]-~=l hi = 2n for hlhzh3h4h 5. The order of the point 
group 8/mmm is 32. 

Space group Special reflection condition 

P8/mmm No condition 
P8/mbm h 2 = 211 for hlh2hlOh 5 
P8/mcc h 5 = 2n for hlh2hlOh 5 

h 5 = 2n for hlh2h2hlh 5 
P8/mnc h 2 + h 5 = 2n for hlh2hlOh 5 

h 5 = 20 for hlh2h2hlh 5 
P8/nmm ~--~4=1 h i = 2n for hlh2h3h40 
P8/nbm h 2 = 211 for hlh2hlOh5 

y~4=l hi = 2n for hlh2h3h40 
P8/ncc h 5 = 2n for hlh2hlOh 5 

h 5 = 2n for hlh2h2hlh5 

P8/nnc 
~--~4= hi = 2n for hlh2h3haO 1 
h 2 + h 5 = 2n for hlh2hlOh 5 
h 5 = 2n for hlh2h2hlh 5 
Y~.~=l hi = 2n for hlh2h3h40 

P84/mmc h 5 = 2n for hlh2h2hth5 
P84/mbc h 5 = 2n for hlh2h2hlh 5 

h 2 = 2n for hlh2hlOh 5 
P84/mcm h 5 = 2n for hlh2hlOh 5 
P84/mnm h 2 + h 5 = 2n for h lh2h 10h5 
P84/nmc h 5 = 2n for hlh2h2hLh 5 

4 )--~-i=l hi = 2 ,  for hlh2h3h40 
P84/nbc h 5 = 20 for hlh2h2hlh5 

h 2 = 2n for hlh2hlOh 5 
~-'~-~=1 h~ = 2n for hlh2h3h40 

P84/ncm h 5 = 211 for hlh2hlOh 5 
Y~-~=I hi -- 2n for hlh2h3h40 

P84/nnm h 2 + h 5 = 20 for hlh2hlOh 5 
~4=  h i = 2n for hlh2h3h40 1 

18/mmm No condition 
18/mmc h 5 = 2n for hlh2h2hlh5 
182/ndm 2h 2 + h 5 = 4n for hlh2hlOh 5 

)-'~=1 hi = 2n for hlh2h3h40 
182 / ndc 2h 2 + h 5 = 411 for h I h2h I Oh 5 

h 5 = 2n for hlh2h2hlh5 
Y~=I hi : 2n for hlh2h3h40 

t ives g ive  equ iva len t  posi t ions.  In the present  case,  
Dlo h = D 5 + C2~D 5 + ~r D 5 + I D  5. There fo re ,  
{E l0} ,  {C2~1d5/2},  {o- 1d5/2 } and {I[0} lead to the 
equ iva len t  posi t ions  (i, i, i, i, 5 z ) / 5 ,  - ( i ,  i, i, i, 5 ( 1 / 2  - 
z ) ) / 5 ,  ( i , i , i , i ,  5 ( 1 / 2 -  z ) ) / 5  and - ( i , i , i , i , 5 z ) / 5 .  

8. Space groups of quasicrystals 
The  space groups  for  po lygona l  and i cosahedra l  
quas icrys ta ls  have  been  g iven  (G~ihler & Rhyner ,  1986; 
G~ihler, 1990; Janssen,  1986; Rokhsar ,  Wr igh t  & Mer-  
min,  1988; Lev i tov  & Rhyner ,  1988; Rabson ,  M e r m i n ,  
Rokhsa r  & Wright ,  1991). There  are 90 oc tagonal ,  34 
decagona l ,  33 d o d e c a g o n a l  and I I i cosahedra l  non-  
equ iva len t  space groups.  The  equ iva l ence  re la t ion  is 
the same  as the direct  ex tens ion  o f  the equ iva l ence  

Table  9. Decagonal space groups in 5D space with 
highest symmetries 

There exists only the primitive lattice in this case. The order of the 
point group lO/mmm is 40. 

Space group Special reflection condition 

PiO/mmm No condition 
PiO/mcc h 5 = 2n for hlh2h2hlh 5 

h 5 = 2n for hlh2h2hlh 5 
PlO5/mmc h 5 = 20 for hlh2h2hlh 5 
PlOs/mcm h 5 = 2n for hth2h2hlhs 

Table  10. Dodecagonal space groups in 5D space with 
highest symmetries 

Note that P126/mmc, which has the reflection condition h 5 = 2 ,  tor 
h lh2h2hlh 5, is equivalent to P! 26/mcm because of the normalizer as 
given in the text. The order of the point group 12/mmm is 48. 

Space group Special reflection condition 

Pl2/mmm No condition 
PI26/mcm h 5 = 2n for hlh2hlOh 5 
PI2/mcc h 5 = 217 for hlh2hlOh 5 

h 5 = 2n for hlh2h2hlh5 

re la t ion in 3D space into n D  space.*  Space  groups  wi th  
h ighes t  symmet r i e s  and their  ref lect ion cond i t ions  are 
s h o w n  in Tables 8, 9 and 10. The  pr imi t ive  and body-  
cen te red  latt ices are present  in 5D oc tagona l  lat t ices,  
whi le  on ly  the pr imi t ive  latt ice exists  for  5D d e c a g o n a l  
and d o d e c a g o n a l  lattices.  The  b o d y - c e n t e r e d  lat t ice has 
an addi t ional  lat t ice point  a t  ~ ~ - - 1  d i / 2  in a unit  cell .  
The  6D icosahedra l  lat t ices have  three lat t ice types:  
pr imit ive ,  f ace -cen te red  and b o d y - c e n t e r e d  latt ices.  
There  exist  32 cen te r ing  t ransla t ions  in the f ace -cen te r ed  
lattice, w h i c h  are (0, 0, 0, 0, 0, 0), (1, 1 ,0 ,  0, 0, 0 ) / 2 ,  
(1 ,0 ,  1 ,0 ,  0, 0 ) / 2  etc., whi le  those  o f  the b o d y - c e n t e r e d  
latt ice are (0, 0, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1 ) /2  wi th  
respect  to the uni t  vec tors  g iven  in (37). 

An  impor tan t  point  re la ted  to the equ iva l ence ,  w h i c h  
is specif ic to space groups  of  quas icrys ta ls ,  is the s imi-  
larity t rans format ion  d i scussed  in §4. This  g ives  a dif- 
ferent  sett ing of  the uni t  vectors .  T h e  space g roups  
t r ans fo rmed  to each  o ther  by the c h a n g e  o f  the uni t  
vectors  are equivalent .  In te rna t iona l  symbo l s  o f  the 
space groups  ( H e r m a n n - M a u g u i n  symbols )  in Tables  8 
to 11 consis t  o f  symbol s  o f  the lat t ice type  (pr imi t ive ,  
b o d y - c e n t e r e d  etc.) and the genera tors  o f  space g roups  
that g ive  the essent ia l  ex t inc t ion  rules. The  lat t ice type  
can be de t e rmined  eas i ly  by the ex t inc t ion  rules  for  
genera l  reflect ions.  In o rder  to find a space group,  we  
have  to k n o w  the point  g roup  first, w h i c h  is g iven  
by the rota t ional  s y m m e t r y  of  d i f f rac t ion patterns.  The  

* Note that the equivalence relation used in space groups of modulated 
structures is different from it and the space groups classified by the 
former are called superspace groups. It gives a finer classification than 
that used in the classification of space groups of quasicrystals. 
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non-primitive translations can be determined from the 
extinction rules. Therefore, it is convenient to consider 
the extinction rules derived from the screw axes or glide 
planes corresponding to the generators in the symbol 
of the space group. In the dihedral groups with the 
highest symmetry, they are the n-fold axis (n = 8, 10 or 
12), the mirror plane perpendicular to it and two mirror 
planes including the axis and two other axes (denoted as 
'along' and 'between' in Fig. 26). The rotational parts 
of the latter two are denoted as cr and or'. Their matrix 
representations in the decagonal lattice are given by (39) 
and (43). That of or' is common for the octagonal and 
dodecagonal lattices and given by 

/~(o') = 
[i001!] 0 1 0 

1 0 0 
0 0 0 
0 0 0 

(octagonal, dodecagonal) 

(44) 

while the matrix of cr is different. The matrix repre- 
sentations of ~r for the octagonal and dodecagonal cases 
a r e  [i01 0!] 0 1 0 0 

R(a) = 1 0 0 0 (octagonal) (45) 
0 0 - 1  
0 0 0 

I;°l °!1 0 1 0 0 
R(a) = 1 0 0 0 (dodecagonal). (46) 

1 0 - 1  
0 0 0 

There are no tables of the symmetry operators for 
quasicrystals but they can be calculated from the sym- 
bol of the space group as shown below. The genera- 
tors of these space groups are given by {C,,It(6',,)} 
(n = 8, 10, 12), {~rlt(~r)}, {II0} and lattice transla- 
tion {Eldi}  (i < 5) for polygonal quasicrystals and 
{CsIt(Cs)}, {C3It(C3)}, {II0} and lattice translation 
{Eldi}  (i _< 6) for icosahedral ones. R(C8) and R(CI2 ) 
are (4 + 1) block-diagonal matrices with (11) and (14) 
for the first 4 x 4 part and 1 for the second, while 
R(Cs) and R(C3) for the icosahedral case are in (24) 
and (25). The corresponding non-primitive translation 
can be obtained from the reflection conditions (extinction 
rules) in Tables 8-11. This is zero for all generators in 
symmorphic space groups like P8/mmm, P lO/mmm and 
Pro35. 

An example of the calculation of non-primitive trans- 
lations is shown for the octagonal case. In order to obtain 
them for non-symmorphic space groups, it should be 
noted that ~r' is given by Cs~r and the last two letters in a 

space-group symbol represent (crlt(cr)} and (cr'lt(~r')}. 
From {C81t(C8)}{crlt(~r)} = {Cscrlr'8t(~ ) + t(C8) }, 
t ( a ' )  should be Cst(~r)+t(6'8). The non-primitive trans- 
lations can be divided into two parts. One is intrinsic, 
which is independent of the choice of the origin, and 
the other is non-intrinsic. The first part is responsible 

3 

4 ~... ,://4 .-" 

(a) 1 

4 
(b) 

4 

(c) 

Fig. 26. The location of glide planes of (a) octagonal, (b) decagonal and 
(c) dodecagonal lattices. The solid lines are along the unit vectors, 
while the dotted lines are between the vectors. The numbers stand 
for the independent vectors. 
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Table 11. lcosahedral space groups in 6D space 

The primitive, body-centered and face-centered lattices are denoted 
by P, I and F in the prefix. The body-centered lattice gives the 
reflection c o n d i t i o n  Z 6i=l h i = 2n for hlh2h3h4hsh 6 while for the 
face-centered lattice h i (1 _< i _< 6) are all even or all odd for 
hih2h3h4hsh 6. The space groups P235m, 1235m, F235 m (m = 2, 3, 
4) are equivalent to P2351,/235 i , F2351 because of the presence of 
the normalizer__ given in the text. The orders of the point groups 235 
and m35 are 60 and 120. 

Space group Special reflection condition 

P235 No condition 
P2351 h i = 5n for hlh2h2h2h2h 2 
1235 No condition 
12351 hi + 5h 2 = 10n for hlhzh2h2hzh 2 
F235 No condition 
F2353 h 1 -+- 5h 2 : 10n for hlh2hzh2h2h 2 
Pm35 No condition 

_ _  

Pn35__ h 5 - -  h 6 : 2n f o r  hlh2f~lflzh5h 6 
Im35 No condition 

_ _  

Fm35 No condition 
_ _  

Fn35 h 5 - h 6 = 4n for hih2f~lf~2hsh 6 

Table 12. Non-primitive translations for  the generators 
of  icosahedral space groups 

Space group t(C 5) t(C 3) 

P235j [d] - d 3 q- d5]/5 0 
12351 [d I - d 3 q- 6d5]/10 0 
F2351 [d i - d 3 + 6d5]/I0 0 

_ _  

Pn35 [d 5 q- d6]/2 0 
_ _  

Fn35 [d 5 - d6]/4 0 

for the extinction rules and is known from the symbol. 
In the following, the origin is assumed to be at the 
inversion center. The non-intrinsic part of the non- 
primitive translation t (Cs )  can be determined from the 
mirror plane or the glide plane that is normal to the 
n-fold axis. The rotational part is represented by cr z in 
the following. Since (C8) 4 is the twofold rotation C2, 
o" z -- I (C8)  4. Therefore, 

3 
t ( c r )  = - ~ (Cs ) i t (Cs ) .  (47) 

i=0 

This fixes the non-intrinsic part of  t (C8).  For exam- 
ple, consider P84/nbc. Then, the extinction rules for 
hlheh3h40 imply that the intrinsic part of t(crz) is 

4 d ~--~i=l i /2-  This is consistent with t (C8)  = (d 1 + d 5 ) / 2  
and t (C2)  4 = ~-~i=l d i / 2  shows that the non-intrinsic 
part of  t(o-z) is zero. On the other hand, the intrinsic 
part of t(o-) is d2/2.  This leads to t(cr ')  = (d 1 + d4, 
+ d 5)/2,  which means the c-glide plane. Thus, P84/nbc 
is generated by {C8][d 1 + d5]/2},  {~r]d2/2}, {I10} and 
lattice translations. Similar calculations can be made for 
the dodecagonal space groups but for the decagonal 
case the relation 0 -1 -- C2a has to be used instead 
of  cr' = Cncr (n = 8, 12). For the non-symmorphic 
icosahedral space groups, the non-primitive translations 
of  generators are shown in Table 12. 

So far, the polygonal  quasicrystals with non- 
symmorphic space groups are found but all icosahedral 
quasicrystals have primitive or face-centered symmor- 
phic space groups. Many decagonal quasicrystals are 
centrosymmetric but d-A1-Ni-Fe shows pentagonal 
P10m2, which is a noncentrosymmetric subgroup of  
PlO/mmm (Saito, Tanaka, Tsai, Inoue & Masumoto,  
1992). 

9. Morphology of quasicrystals 
The observation of  growth morphology is possible for 
stable quasicrystals. It is known that the morphology 
of normal crystals is explained by several laws. Well 
known rules are the law of  rational indices, the law 
of  Bravais-Friedel  (see Janssen & Janner, 1987). The 
application of  such laws was attempted for an incom- 
mensurately modulated structure (Dam & Janner, 1985) 

(a) 

(b) 
Fig. 27. The growth morphology of (a) i-AI-Cu-Fe and (b) 

d-AI-Ni-Co. (Courtesy of A. P. Tsai.) 



540 CRYSTALLOGRAPHY OF QUASIPERIODIC CRYSTALS 

and all faces of calaverite are shown to have small 
integral Miller indices. However, the importance of the 
dense lattice plane asserted by the Bravais-Friedel law 
has not been confirmed. In modulated structures and 
quasicrystals, some lattice planes are not periodic. In 
particular, in icosahedral quasicrystals, all lattice planes 
are not periodic. Therefore, the direct application of the 
Bravais-Friedel law is impossible. However, the law of 
rational indices can be applicable the same as in the 
modulated structure. Two examples are shown in Fig. 
27 (Tsai, Inoue & Masumoto, 1987, 1989). The first 
found stable icosahedral quasicrystal AI-Cu-Li shows 
a triacontahedral morphology, indicating that the faces 
are indexable as 110000 etc., which is perpendicular to 
the twofold axes (Dubost, Lang, Tanaka, Stainfort & 
Audier, 1986). On the other hand, that of face-centered 
icosahedral AI-Cu-Fe is dodecahedral (Fig. 27a). This 
has faces with indices 100000 etc. that are perpendicular 
to the fivefold axes. Decagonal A1-Ni-Co (Fig. 27b) 
has decagonal-columnar shape with ten faces that are 
normal to the twofold axes. In the decagonal lattice, 
there are two twofold axes along 10000 and 10010 
but which index is related to the prism face has not 
been clarified. In all cases, the crystal faces seem to 
be related to strong reflections. In fact, in i-AI-Cu-Li 
and i-A1--Cu-Fe, the strongest reflections are 110000 and 
100000, while the strongest reflections of d-A1-Ni-Co 
are 00002 and 13420. The latter is parallel to the twofold 
axes 10010. Therefore, a face parallel to the tenfold axis 
may be 100i0. 

10. Structure-factor calculations 

The structure-factor calculations of quasiperiodic tilings 
have been performed by several people (Duneau & 
Katz, 1985; Kalugin, Kitayev & Levitov, 1985a,b; Elser, 
1986; Jari6, 1986; Pavlovitch & K16man, 1987). Analytic 
expressions of general quasicrystals having polygonal or 
polyhedral occupation domains are given by Yamamoto 
& Ishihara (1988), Yamamoto & Hiraga (1988) and 
Yamamoto (1992b). 

The structure factors of quasicrystals can be calcu- 
lated based on the section method. In this method, the 
diffraction patterns are regarded as the projection of the 
Fourier spectra in nD space onto the external space. In 
quasicrystals, the correspondence between the diffraction 
spots and the reciprocal-lattice points in nD space is one 
to one. Therefore, the calculation of the structure factor 
is reduced to the calculation of the Fourier spectra in 
nD space. The structure factor is the Fourier integral of 
the electron density in a unit cell of nD space. This is 
reduced to the calculation of the Fourier integral of the 
occupation domain in the internal space and the phase 
factor related to the location of the domain. It is usually 
assumed that the occupation domains of quasicrystals are 
polygonal for polygonal quasicrystals and polyhedral for 

icosahedral quasicrystals, since this is the case for those 
of quasiperiodic tilings. They are divided into triangles 
or tetrahedra, the Fourier integrals of which are given 
analytically. Thus, we obtain the analytical expression 
for the structure factor. In a rough approximation, a 
polygon or a polyhedron can be approximated by a circle 
or a sphere. In fact, for the pentagonal Penrose tiling 
or Stampfli tiling and 3D Penrose tiling, this is a good 
approximation (see Figs. 18c, 19 and 23c). In such cases, 
the structure factor can easily be calculated. In all cases, 
it has the following form: 

F ( h ) =  E E f l ' ( h e ) p ~ ' e x p [ - B " ( h ~ ) 2 / 4 ]  
{Rlt}" 

× exp[2r ih .  (Rr"  + t ) ] F ~ ( R - l h ) ,  (48) 

where the position, temperature factor and occupancy 
of the #th independent occupation domain are repre- 
sented by # ' ,  B v and pV. F0~(h) and fV(h e) are the 
Fourier integral and atomic scattering factor of the #th 
occupation domain. The sum of {Rlt}~' runs over the 
symmetry operators of the space group which create new 
occupation domains in a unit cell from the independent 
ones. If the occupation domain is a circle with a radius 
r, its Fourier integral is 

F~'(h) = 2 V J l ( q o ) / q o  (49) 

with V - -  71-r 2 and q0 - 27rhir, where J1 is the Bessel 
function of first order. Similarly, the Fourier integral of 
a sphere with radius r is given by 

Fo'(h) = 3V[sin(qo) - qo COS(qO)]/(qo) 3 (50) 

with V = 47rr3/3. 
For polygonal or polyhedral domains, which are de- 

composed into several triangles or tetrahedra, F~'(h) 
is calculated by using the site symmetry from their 
independent parts. Since the Fourier integral is linear, 
Fg' is given by the summation of Fourier integrals 
of triangles or tetrahedra. Provided that the occupation 
domain consists of v independent triangles or tetrahedra, 
it is given by 

Fo"(h/ E ' - '  = F~i (R  h), (51) 
i = l  R' 

where R' is the rotational part of the site-symmetry 
operator, which runs over all site-symmetry operators. 
The Fourier integral of a triangle defined by the vector 
e I and e 2 (see Fig. 28a) is given by (Jari6, 1986; Ishihara 
& Yamamoto, 1988) 

Foi (h  ) = V{q , [exp( iq2  ) - 1] 

- q2[exp(iql)  - 1 ] } / q l q 2 ( q l  - q2) ,  (52) 
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where V = le  I x e2[, q: /~ 27rej • h i ( j  = 1,2), e; are 
edge vectors of a triangle constructing the polygon.* 
The Fourier integral of the tetrahedron defined by e I , e 2 
and e 3 (Fig. 28b) is given by (Yamamoto, 1992b) 

Fo~(h) = - iV[q2q3q4 exp(iql) + q3qlq5 exp(iq2) 

+ qlq2q6 exp(iq3) + q4qsq6]/(qlq2q3q4q5q6), 
(53) 

where qj = 27rh i . e j  ( j  = 1, 2, 3), q4 : q2 --  q3, q5 = 
q3 -- ql, q6 = ql -- q2 and V = e I • [e 2 x e3] is the volume 
of the rhombohedron with the edge vectors e l, e 2 and 
e 3. Note that (49) and (52) [(50) and (53)] give the area 
(volume) of the circle and the triangle (the sphere and 
the tetrahedron) in the small h i limit as expected. 

In the above consideration, it is assumed that the 
shape of the occupation domain is known. One of the dif- 
ficult problems of the structure determinations is to de- 
termine its size and shape. The occupation domain with 
any shape can be approximated by a deformed circle 
or sphere (Elcoro, P6rez-Mato & Madariaga, 1994). The 
deviation from the circle or sphere can be expressed in 
terms of trigonometric functions or spherical harmonics. 
The Fourier integral of such an occupation domain 
cannot be given analytically and has to be calculated 
numerically. In this method, however, we can refine 
the size and shape of the occupation domain under the 
constraint of the site symmetry. It is also possible to 
refine the size and shape of polygonal and polyhedral 
occupation domains by changing the length of the edge 
vectors. If their independent part consists of several 
triangles or tetrahedra, the directions of some edge 
vectors can also be changed. Such a refinement has been 
made in the analysis of decagonal quasicrystals (Steurer, 
Haibach, Zhang, Kek & Liick, 1993). 

A characteristic feature of the cluster model discussed 
later is that there exist many occupation domains with 
the same shape so that their Fourier integral is common 
to many equivalent and non-equivalent sites and can 
be calculated only once for each h. Furthermore, if 
the domain has a full (decagonal etc. or icosahedral) 
point symmetry, F(I' ( R - l h )  = F(')'(h). The use of these 
relations decreases the calculation time very much. 

• It should be noted that (Ij depends only on the internal-space compo- 
nent of h because e j  is a vector in the internal space. Consequently, 
F0(h)  also depends only on the internal-space component of h. 

el e2 e 2 7 el~~ e3 

(a) (b) 

Fig. 28. Primitive domains of (a) polygonal and (b) icosahedral 
quasicrystals. 

As mentioned in §§5 and 6, typical quasiperiodic 
tilings like the octagonal Penrose, Stampfli and 3D 
Penrose tilings have an occupation domain at the origin. 
Such an occupation domain may be approximated by a 
circle or a sphere with the same area or volume. Then 
their structure factors are proportional to (49) or (50). It 
is noted that they decrease with increasing the internal 
component of the diffraction vector, h i , because of the 
presence of q0 in the denominator. On the other hand, 
they agree with V in the small h i limit. This means 
that only reflections with small h i are observable in 
practice. This is the reason why the diffraction spots 
are observed although the projection of the lattice points 
cover everywhere the 2D or 3D external space. In a 
general tiling with several occupation domains in the 
unit cell, the structure factor is the summation of F~' 
multiplied by a phase factor depending on the location 
of the occupation domains. The decrease of each F~' 
with increasing h i will give a similar tendency in the 
diffraction intensity. 

11. Point density and frequency of subpatterns 
The density of quasicrystals is a fundamental quantity 
and has to be explained by their models. The density 
calculations are based on the fact that the occupation 
domain at some lattice point n intersects the external 
space at a point and the set of all possible cross points 
covers the occupation domain homogeneously (Elser, 
1986). Therefore, the point density of such points is 
proportional to the volume (or area) of the occupation 
domain in the internal space. The factor is given by the 
inverse of the unit-cell volume in nD (n = 4, 5, 6) space. 

is V ~. It is simple to calculate the unit-cell volume of the 
hypercubic lattice. In 4D octagonal and 6D icosahedral 
lattices defined by (30) and (37), the hypercubic lattice 
is obtained when a = a'. Then the volume is 2 a  4 

for the former, while the occupation domain of the 
octagonal Penrose tiling is the octagon with the edge 
length a, the area of which is 2a 2 cotan(Tr/8). Therefore, 
the point density of the octagonal Penrose tiling is 
p - cotan(Tr/8)/a 2. The result is independent of the 
value of a'. For the hypercubic lattice in 6D space, 
the cell volume is 8a 6 provided that a = a'. The 
volume of the triacontahedral occupation domain for 
the 3D Penrose tiling can be given by the sum of the 
volume of the ten acute and ten obtuse rhombohedra 
and is 8a3[sin(27r/5) + sin(47r/5)~. The point density 
is p - -  [sin(27r/5)+ sin(aTr/5)]/tr ~ (Elser, 1986). The 
point density of the Penrose tiling with an edge length 
of 2(~/5 '/2 is given by p = [sin(27r/5) + sin(aTr/5)]/a 2 
(Yamamoto & Ishihara, 1988). 
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In some cases, it is important to know the clas- 
sification of the local environment around a specified 
point and its frequency. For example, this is necessary to 
know the physical properties and to model quasicrystals. 
The latter is reduced to the frequency of the set of 
points (an atom cluster) appearing in the external space. 
This means that the occupation domains of neighboring 
atoms intersect the external space when that of the 
specified atoms intersects it. This is possible only when 
the occupation domains of neighboring atoms and the 
specified atom have a common part when they are 
projected onto the internal space (see Fig. 5c). Let the 
occupation domain of the jth atom of a cluster centered 

U i  V(r~) ~ 0 is proportional at rj be V(rj).  Then i 
to the frequency of the atom c]~uster. For example, the 
frequency of the 12-fold vertices of the 3D Penrose 
filing, from which 12 edges go out, is obtained from 
W(0) U[U~21V(d~.)], where d6+ i - -  - d i ,  V(0) i s  the 
rhombic triacontahedron with edge length a ~ (Fig. 23c). 
The common part V(0)[Ul2=l V(d~)] is also the rhombic 

J 

triacontahedron but with the edge length of "r-2a ', so 
that the frequency of the 12-fold vertices is smaller than 
that of all the vertices by a factor 7 .-6 (Elser, 1986). 
In the octagonal Penrose tiling, there exist threefold to 
eightfold vertices, which come from the area shown 
in Fig. 16 (Beenker, 1982). In this case, if vertices 
appear at d~: and d~+l (or d~: and d.~+2), an additional 
vertex .appe~ars at ~ de,.. + d ; ~  . . . .  (d~"+ d~+2), because 
d ~ d ~ d ~ a ~ ~ ~ ~ ~ f • ] j + j+ll < ]  j] (I. j + d~+2] < ]djl), ormlng a 

rnombus (square) togetlaer witla the vertex of the cluster 
center. The frequency of each vertex is proportional to 
the area of its occupation domain. Such a classification 
has been made for the Penrose, generalized Penrose 
and 3D Penrose tilings (de Bruijn, 1981; Pavlovitch 
& Klrman, 1987; Zobetz & Preisinger, 1990; Henley, 
1986). 

12. Description of quasicrystal structures 

Quasicrystal structures have to be described by a finite 
number of parameters. The essential parameters are 
the position, the size and the shape of the occupation 
domains, and the temperature factor. In quasicrystals, 
an atom site may be occupied partially by several atoms 
statistically. Then we need, in addition, occupation prob- 
abilities of each site by constituent atoms. When the 
occupation domain is polygonal or polyhedral, we can 
specify its shape and size with the independent triangles 
or tetrahedra and the site symmetry (Yamamoto, 1992b). 
The shape of the occupation domain is restricted by the 
site symmetry. Its symmetry should be equal to or higher 
than the site symmetry. For example, the occupation 
domain at the special point with full rotational symmetry 
can be expressed by only a small number of independent 
triangles or tetrahedra because of the high site symmetry. 
The octagonal Penrose, pentagonal Penrose, Stampfli 
and 3D Penrose tilings are obtained from the octagon, 

Table 13. The occupation domains of typical tilings with 
one occupation domain 

The shape of the occupation domain can be specified by the vectors 
pointing to the corners of  a triangle or tetrahedron and the site 
symmetry. The vectors are represented wi th  respect to the vectors 
e *, which are the internal comoonent of d~ for the Beenker and 

-" . . ~ i ~ / 2  
3D Penrose tfllngs, e j  = (2a /5  )Icgjaa + s2ja4] ( j  _< 5) for the. 

. .  i - i/~ 
pentagonal Penrose tlhng, e j  = (2a / 6  )[c5ia 3 + s5ia4] (j  '< 6) 
for the Stampfli tiling, where c a = cos(2rj/n) and s j  = s i n ( 2 r j / n ) ,  
n is 10 and 12 for the pentagonal Penrose and the Stampfli tilings. 

Tiling Symmetry Comer vector Site symmetry 

Octagonal p 8 m m  (1,1,0,1)/2 8ram 
- - 

Penrose (1,1,1,1)/2 
Pentagonal p l0mm (1,0,1,0,0) 10mm 
Penrose (1 ,1 ,1 ,0] ) /2  
Stampfli p 12mm ( 1,0,0,0,0,0) 12mm 

(1,0,0,0,0,1)/3 z/2 
3D Penrose P m 3 5  (1 , ] , ] , ] , ] , ] ) /2  m35 

(1 ,1 , ] , ] , i , ] ) /2  
(l,0,i,i,0,i)/2 

decagon, dodecagonal star and triacontahedron, which 
can be formed from one triangle or tetrahedron by the 
site-symmetry operations (Figs. 16a, 18c, 19 and 23c). 
Thus, they are specified by two or three radial vectors 
from the center of the occupation domain, which are 
listed in Table 13. In order to specify the shape of 
occupation domains, we can use the internal compo- 
nents of the unit vectors in the minimal dimension. 
It is however convenient to use the vectors e i. = 

(2a'/51/2)[c2ja~ + s2:a4] ( j  < 5) for the decagonal 
and e~ = (2a"/6'/2)Ics(j_,)a;+ ss(j_l)a4] ( j  _< 6) 
for the dodecagonal tilings (Figs. 10e and f) .  They are 
related to the internal-space components of 5D and 6D 
representations of the filings. These are also related to 
the internal components of the unit vectors in 4D space 
by 

I 
d! 
d~ i 0 0 0 -1  1 0 0 - 1  

0 1 0 -1  
0 0 1 -1  I 

°! 
e~ 

e~ 
(decagonal) 

(54) 

I 
d! 
d~ 10 0 0 0 -1  

= 0 1 0 0 0 
0 1 0 1 
0 0 1 0 

e l 
- " t  

01 e2 --1 eZ 3 

0 e~ 

1 i e 5 
e 6 

(dodecagona l ) .  (55) 
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Table 14. The occupation domains of  typical tilings with several occupation domains 

These have two independent occupation domains located at the special positions. The corner vectors of their independent part are shown. The 
notation for the comer vector is the same as in Table 12, while the position of the center of the occupation domains is given by the 4D and 6D 
coordinates for polyhedral and icosahedral tilings. Note that the Socolar tiling has a face-centered lattice with a doubled lattice constant. 

Tiling Symmetry 

Penrose p 10mm 

Binary p l Omm 

Dodecagonal p 12ram 
Penrose 

Socolar Fm35 

Comer vector Site symmetry Position 

(I,0,0,0,0) 5m (1.1,1,1)/5 
(1,o,o,l,O)/2 
( 1,0,0,1,0) 5m (2,2,2,2)/5 

(I,2,0,1,0)/2 
( 1,0,0,0,0) i Omm (0,0,0,0) 

( 1,0,0,0, J )./2 
(0,0,0,0,1) 5m (1,1,1,1)/5 
(o,o,i,o,i) 

(o,],O,l,O,2)/3 3m (0,1,0.2)/3 
(0,1,0,2,0,1)/6 
(2,1,1,1, i ,2)/3 3m ( !, 1,2.2)/3 
(_J,i,_2,1,i,2)/3 

_ _  

(!,1,1,1,1,1)/4 m35 (1,1,1,1.1.1)/4 
(i,0,0,0,1,0)/4 
(5,1,1,1,1,1)/20 
(1,1,1,1,1,1)/4 m35 (3,1,1,1,1,1)/4 
(i,1,0,1,1.0)/4 

- - _ 

(1,1,1,1,1,1)/4 

For the octagonal and icosahedral tilings, e i. -- d i 
3 3 "  

Tables 13 and 14 use the coordinates with respect to 
e i. (Figs. lOd-f  and l ib) .  

Other quasiperiodic tilings have several occupation 
domains. In the Penrose, binary and dodecagonal Pen- 
rose tilings, their number is 4, 3 and 8 but two of 
them are independent for all the cases (Figs. 18a, 20 
and 21). The tiling obtained by Niizeki is derived from 
the occupation domains A, B, C and D in Fig. 21 
(Niizeki, 1989). For the icosahedral Socolar tiling, two 
occupation domains exist (Fig. 24). Their location and 
the corner vectors are listed in Table 14 together with 
the site symmetry. Except for the generalized Penrose 
tilings, which are obtained from the ~'~-gonal lattice 
(n = 8, 10, 12) in nD space (the octagonal, decagonal, 
dodecagonal Penrose tilings and 3D Penrose tiling etc.), 
the shape of the occupation domain is not related to the 
projection of the unit cell, so that we can obtain many 
tilings by tailoring the occupation domains. In particular, 
the occupation domains for the cluster models have a 
complicated shape as shown in § 16. 

13. Phason in quasicrystals 

The linear shear strain in quasictystals giveg prominent 
effects in the diffraction pattern and leads to a variety 
of structures. They can be classified into two categories. 
One is the phonon strain and the other the phason strain. 
The former leaves the external space passing through the 
origin invariant, while the latter leaves the internal space 
unchanged. In Figs. 29(b) and (c),' these two are shown 
for the Fibonacci lattice (1D analog of the quasicrystal), 
where the primitive tiles are reduced into short (S) and 
long (L) bars in the external space (horizontal line) and 

the occupation domain is a vertical bar. The phonon 
strain changes the size of the short and long tiles, 
keeping the arrangement of the tiles, while the phason 
strain changes the arrangement of the tiles, keeping the 
size of the tiles. The diffraction patterns corresponding 
to the distorted lattices under the phonon and phason 
strains are shown in Fig. 30. In the 7tD crystallography, 
the observed diffraction patterns are regarded as the 
projection of the reciprocal lattice onto the external 
space (horizontal line) along the internal space (vertical 
line). The phonon distortion does not change the position 
of the diffraction spots but the intensity, while the 
position is displaced under the phason strain, keeping 
the intensity unchanged. The displacement from the 
position of the undistorted lattice is proportional to the 
internal component of the diffraction vector. It should 
be noted that, under an appropriate phason distortion, 
we get a periodic structure (Fig. 31a). Then, an infinite 
number of reciprocal-lattice points is projected onto the 
same point in the external space (Fig. 31b). This is the 
crystalline approximant. Therefore, the structure factor 
for the crystalline approximant is obtained by summing 
up structure factors of the reciprocal-lattice points which 
are projected onto the same position. In this case, the 
symmetry of the Fibonacci lattice is oblique before and 
after the phason distortion and is unchanged. On the 
other hand, the phason distortion lowers the symmetry 
of polygonal or icosahedral quasicrystals and a variety of 
phason distortions can be considered (Ishii, 1989; Wang, 
Quin, Lu, Feng & Xu, 1994).* 

* Exactly speaking, the structure under the phonon strain in Fig. 29(b) 
is different from a normal structure under the shear strain as in Fig. 
7(c). In this case, only the lattice is deformed by the strain keeping 
the occupation domain unchanged. 
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For simplicity, we neglect the phonon distortion with 
respect to the n-fold (n = 8, 10, 12) axis along the 
periodic direction for polygonal quasicrystals. Then the 
unit vectors of the distorted lattice are given by 

gap or overlap, we have to use the projection of the 
new cell as the occupation domain. After that, we can 
obtain the quasiperiodic tilings under phason strain in a 
similar way. For example, if the internal component of 

m m 

d'i = E Qija} = Y~(QTe / i ) i j a j ,  (56) 
j=l j=! 

where m = 4 and 6 for polygonal and icosahedral 
quasicrystals and Qij are defined by (30), (32), (34) 
and (37). T e and T i are  the strain tensors for the linear 
phonon and linear phason strains, which have following 

0] 
id (57) 

= ia , (58) 

forms: 

where I a is the d x d unit matrix, U e and U i are general 
d x d matrices and U i = - U  e, d = 2 for polygonal 
and d = 3 for icosahedral quasicrystals. An appropriate 
combination of the phonon and phason strains can give 
a rotation (Kramer, 1987; Torres, Pastor, Jimenez & 
Fayos, 1989; Soma & Watanabe, 1992). We now discuss 
the phason strain in more detail. 

13.1. Quasiperiodic tilings under phason strain 

In real quasicrystals, the phason strain always reduces 
the symmetry, which can be crystallographic or non- 
crystallographic. The SM can calculate their diffraction 
patterns (Elser & Henley, 1985; Wang & Kuo, 1988; 
Yamamoto, 1992b). The phason strain shifts the position 
of diffraction spots. The unit vectors in the reciprocal 
lattice under the phason strain are given by 

d*'i = ~-~(MT~)ij aj.  (59) 
i = 1  

The diffraction vector h with Miller indices h (i < n) 
under the phason strain is given by h = y~/,t=, hTd]'. 
The tiling under the phason strain is obtained easily 
from the SM. The effect of the phason strain appears in 
the location of the occupation domains and their shape. 
In the previous section, it is shown that the occupation 
domain can be specified by the coordinates with respect 
to the internal components of the unit vectors, As shown 
in §5, the occupation domains of typical tilings like the 
octagonal, decagonal and dodecagonal Penrose tilings 
are related to the projection of the unit cell of the nD 
space (n = 4, 5, 6) onto the internal space. Equations 
(57) and (59) indicate that the internal components of the 
unit vectors change according to the phason distortion 
with their external components left invariant. As a result, 
the shape of the occupation domain slightly changes. 
In order to obtain a tiling with the same tiles without 

i 

I 

(a) 

e 

(b) 

/ I  "-- .d/ I  "}F.. ' 

(c) 
Fig. 29. I D quasicrystals under (a) no strain, (b) phonon strain and 

(c) phason strain. 
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- n '  = ~--~4. I n .d'. is in the new occupation domain, its 
3 = 3 3 

external component is plotted. 
For the description of distorted quasiperiodic tilings, 

it should be noted that the site symmetry is reduced by 
the phason strain. Therefore, the independent part. of the 
occupation domain is larger than that of the original one. 

13.2. Polygonal quasicrystals under phason strain 
For octagonal (dodecagonal) quasicrystals, Ui'l = 

-t:~2 and V~2 : u~l (u~¿ : u~2 and U~, : -U~2) 
lead to the tetragonal distortion. Then the diffraction 
pattern shows the tetragonal symmetry although the 
number of unit vectors necessary for the indexing is 
still five (four for 2D tilings) in general. Therefore, 
the symmetry is crystallographic but the diffraction 
pattern is similar neither to that of usual crystals nor 
to that of modulated structures. In the latter, prominent 
so-called main reflections are found but there exist 
no such reflections in the distorted quasicrystals under 
the phason strain. Therefore, these should be called 
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V e 
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V ° 

J ! 

(c) 

Fig. 30. The diffraction patterns corresponding to the structures in 
Fig. 29. 

V e 

(b) 
Fig. 31. (a) A periodic structure under the phason strain and (b) its 

diffraction pattern. 
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tetragonal quasicrystals. An example is shown in Figs. 
32(a) and (b) for a distorted octagonal Penrose tiling. 
Similarly, the hexagonal quasicrystals are possible for 
dodecagonal cases when Ut] = -U~2 and U~2 = U~I. 
When IU/,I  # lug21, orthorhombic quasicrystals are 
realized in general (including decagonal cases) while 
If t21 # IU~,l causes monoclinic distortion. 

13•3. Icosahedral quasicrystals under phason strain 

It is convenient to use two sets of unit vectors of 
the external and internal spaces. Pentagonal, cubic and 
trigonal quasicrystals can be derived in the icosahedral 
quasicrystals, as shown by Ishii (1989) (see also Mai, 
Tao, Zeng & Zhang, 1988)• For the pentagonal quasi- 
crystals, a, given by (37) is convenient but another 
unit-vector set is more appropriate for the latter two 
although both sets can express all possible distortions. 
This is because two axes a 3 and a 6 are parallel to the 
fivefold axis in (37). Then, non-zero U~l -- U~2 and 
Uj3 give the pentagonal quasicrystals. In order to treat 

(a) 

the latter two cases, it is convenient to take unit vectors 
parallel to the twofold axes (Yamamoto, 1992b), which 
are defined by 

I 
dl 
d 2 
d 3 
d+ 
ds 
d 6 

(2 + r)l /2 

I 
13 7 0 7- - 1  0 r 0 1 - 1  0 7 
7- 0 - 1  - 1  0 -7- 

x 0 1 --T 0 T 1 
1 r 0 - - r  - - 1  0 

1 7 0 r - 1  I 
a? 
a~ 

a~ 
(60) 

The phason strain matrix T*': is defined by (57) when 
a,: is replaced with a c in (56). Then, U[~ -- U ~ ' =  Uj.~ 
gives cubic quasicrystals and U~  - U~ -- Uj~ and 
U~ -- U~ = U~ lead to trigonal quasicrystals. 

13.4. Crystalline approximants 

The crystalline approximants are obtained when three 
linearly independent lattice points are in the external 
space passing through the origin. In polygonal cases, 
the fifth axis is always in the external space, so that it is 
enough to consider two vectors perpendicular to it. The 
crystalline approximants are important for understanding 
quasicrystal structures so that we discuss several cases 
in more detail• 

The coordinates z i with respect to a i of the lattice 
r t  ! ! 

vector ~] j= l  n jd j  are given by 

z~ = ~ ( T ' & ~  n'  (61) , "~] i j  j"  
j = l  

• " . . " o " . . "  • 

0.. 0.'...0.. 0 
• • .. • , ." .,. • ....., • .. • . 

.'"0 . " *  o ~ . . ' 0 " . . : o  * ".. 0".. 
. . o  .e . . .  0 • • • .  0 . . .  *. 0 . . • .  0 .  ' .  e. e . .  

. o : : : :o . .o . . . -o  ... o o . . • :d :  • ° ' - . -° ' ' .  • ..o o ... v . . , , .  
. ,  . , , "  . " .  • , %  . . ° , , o . ° , . . . ,  . . .  , ' . ,  . " .  

O.." o o ".. 0:'"0 *2 '*  0"':0 ""  o o ' . .  o 
• . o • • , , 0  . , . , . . o , , ,  0 , , , o . . e . • .  O , , , • o . .  
• . .  • ~o 0"..'0".-*'02.'0"--0'...2.'0"..'0". 

• ..0 o.- U....L3.o.,.o.t3.-..U.... o 0.,..0." 

• " • " . . '  , ' ' . . , "  o " , , "  o ' e  e ' o  " , , "  o % .  * ' ' ,  ' . . "  • " .  

• . :.. 0 .. 0:.': o0:. .;0o :..:0 .. 0 ..; o 
• . • , . . .  , . . ,  - .  o • . .  o . .  o . o  . , , ,  o , . . . . . ,  . . . .  • . .  

• "o" .'.o o".'O'..'O'*-*'O".'O"" o o.'. "o'. 
• . . 0 ..'.0.". o. 0....0.... 0 .o .".0..., 0 ... • 

~ )  " • " , . "  0 " . ' . . " o  " " 0  " ' ' "  o " . . ' .  " 0 " , , "  o " 

• .. o .o .. .  0 : " . 0  0".0 O . " : O  ". o. o .. ",., 
• , • , , .  ° ° ,  . , . '  . . %  . % . . %  % ,  , , ,  • . , ,  • • 

. O ' . " O - . ' o O " ' O ' " O o " ' O " " O .  
• .. e.., .....0 ,,.,0 0 .,,. 0.,' ,. • ,, .. % .e ... 

" .e  'e ". " 0 " . . "  0 "- " -" 0 " . . ' 0 "  " '," e."  
" . . . O . . . o o . . . . O . . . : o o . . .  0 . . . "  

• , " . .  • . ,  , , .  • % . . ' ,  , . .  , • 

0.. 0..'.. 0 ". 0 
• ,, • .. , 

...... 

(b) 

Fig. 32. (a) A periodic tetragonal pattern obtained from the octagonal 
Penrose pattern under the phason strain and (b) its diffraction 
pattern. 

From the condition under which the internal-axis 
components are zero, we can obtain the strength 
of the phason strain• In the polygonal (icosahedral) 
quasicrystals, there are four (nine) internal components 
of two (three) independent vectors that should be zero. 
This determines the four (nine) matrix elements of 
U i. It should be noted that the strength depends on 
the lattice constant a f of the internal space• Since this is 
arbitrary, the strength has no physical meaning• Usually, 
a'  is set equal to a but, even in this case, we cannot 
compare the values in coordinate systems with different 
a directly because of the similarity transformation. In 
order to compare the strength of the phason strain, 
we have to use the same coordinate system with the 
same lattice constant a and a'. For example, in the 
so-called (1, 1) cubic approximant as in the R phase 
of A1-Cu-Li or a phase of A1-Mn, the external 
space passes through the origin and (1, 1, 1, O, 1, 0)', 
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(i, 0, 0, 1, l, 1)' and (0, 1, l, 1,0, 1)', where the prime 
means the coordinates with respect to the deformed unit 
vectors d';. Therefore, if they are unit vectors in the 
crystalline approximant, their internal components are 
zero. Then, from ~' = 0 (i -- 4, 5, 6) in (61), we have 
['~i ri 7i 3 , = [ ' ~ , = [ 3 3 = - 7 - -  provided that ~L = W ~_ 4.8 
or 5.0~_-In the trigonal approximant of i-A1-Cu-Fe, 
(2, 1, 1, 1, 1, 1)', (1,2, 1, 1, 1, 1)', (1, 1, 1, 1, 1,2)' of the 
face-centered icosahedral lattice are in the external 
space, forming a rhombohedral approximant. Similar 
calculations lead to the phason strain for this case: 

U i = (~ '7 , (62) 

where (, = -7- -s /2 ,  9 = 7--5(1 + 7 - 2 ) / 2  and '7 = 
-7--~/4. The unit cell of the approximant is the acute 
rhombohedron with the edge length 2"r3a (~ _~ 4.8/~). 
In this case, their face centers are translationally equiv- 
alent to the origin because the approximant is related 
to a face-centered icosahedral quasicrystal. Thus, unit 
vectors of the primitive (rhombohedral) cell are given 
by (a, n + bl?)/2, (b n + c/?)/2 and (~z u + OR)/2, where 
a R, b u and c/? are (2, 1, 1, 1, l, 1)', (1, 2, 1, 1, 1, 1)' and 
(1, 1, 1, l, 1,2)'. (Note that they are in the external 
space.) 

The distortion of the lattice shifts the position of the 
reflections in the external space according to (59). The 
diffraction patterns of R-AI-Cu-Li are shown in Fig. 
33. In crystalline approximants, an infinite number of 
reflections in nD space is projected at the same position 
in the external space as mentioned above. Thus, the 
structure factor of the approximant can be calculated by 
the summation of the structure factors of the overlapped 
reflections of the quasicrystal. In Fig. 33, these over- 
lapped reflections are plotted independently. The inverse 
relation was used to calculate the phases of reflections 
of the quasicrystals from the known approximant phases 
(Jarid & Quin, 1990). 

The above argument determines the lattice of the 
crystalline approximant but there exists an ambiguity for 
the structure. We can obtain different crystalline approxi- 
mant structure with different symmetries by choosing the 
external space passing through the different positions in 
nD space. (Even in quasicrystals, the different external 
spaces lead to different structures but they are locally 
isomorphic and their diffraction patterns and macro- 
scopic physical properties are the same.) The symmetry 
of the crystalline approximant is generally represented 
by the subgroup of the space group of quasicrystals. 
The situation is similar to that of locked-in phases 
of modulated structures, where their space group is a 
subgroup of the superspace group of the incommensurate 
structure and it depends on the choice of the external 
space (Yamamoto & Nakazawa, 1982). For example, 
if it is desired to obtain the centrosymmetric structure, 

the external space passing through the inversion center 
in the nD space has to be chosen. Several examples 
of approximants of the pentagonal Penrose tiling were 
shown by Niizeki (1991). It should be noted that the 
approximant may have a lower symmetry than that of the 
unit cell depending on the choice of the external space. 
An example is shown in Fig. 34, which is obtained from 
the Penrose tiling by introducing the phason strain with 
uiil = _7--6 a n d  U~2 --  - 7  - - 5 .  This has a rectangular 
cell but the structure has only one mirror plane through 
the origin. This is obtained from the external space 
passing through (1, 1, 1, 1)/5. 

Under the phason strain giving crystalline approxi- 
mants, the external space passes only discrete points 
of the occupation domain. If the external space passes 
near or in particular at the boundary of the occupation 
domain, a slight or infinitesimal change in the shape of 
the occupation domain causes different structures. 
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Fig. 33. The diffraction patterns of R-AI-Cu-Li along (a) a threefold 

axis and (b) a twofold axis. They are obtained from a 6D model of 
i-AI-Cu-Li by introducing the phason strain. 
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13.5. Random phason 

In contrast to the linear phason strain, the random pha- 
son strain is the random shift of the occupation domains 
along the internal space, which depends on the external 
component of the position of occupation domains. This 
is a long-range fluctuation of "the occupation domains, 
which is longer than the shortest interatomic distance and 
shorter than the coherence length of X-rays (several lam). 
On the stability of quasicrystals, the random tiling model 
asserts that they are stabilized by entropy effects that are 
caused by the presence of the random phason (Henley, 
1987; Widom, Deng & Henley, 1989; Strandburg, Tang 
& Jarir, 1989). On the other hand, they may be stable 
energetically (Onoda, Steinhardt, DiVincenzo & Socolar, 
1988). These two stabilization mechanisms have not 
been established yet. In any case, quasicrystals seem to 
include random phason strain, but this may or may not be 
essential for stabilization. Since conventional diffraction 
experiments observe the average periodic structures in 
J~D space, the random phason strain obscures the bound- 
ary of the occupation domain and it is reflected in the 
phason temperature factor (Kalugin, Kitayev & Levitov, 
1985a,b). If the fluctuation along the internal space is 
given by a Gaussian function, the occupation domain 
observed by the experiment is the convolution of the 
Gaussian function and the ideal occupation domain. Its 
Fourier integral adds a factor e x p [ - B  w (h ~)2/4] in (48), 
where B '~' is the phason temperature factor. Thus, the 
factor exp[-tT'(h')2/4] in (48) has to be replaced by 
exp[-B~' (h")2/4 - B 'u (h ~ )2/4]. The anisotropic phason 
temperature factor is expected theoretically when the 
quasicrystal transforms into a crystalline approximant by 
the instability for a phason distortion (Jari6 & Nelson, 
1988). 

14. Structure determination methods 

There are several methods of the structure determination 
of quasicrystals. All the methods are based on the 7~D 
description of quasicrystal structures. Several classical 
methods are also applicable to quasicrystals. The Patter- 
son method can draw Patterson maps in the nD space, 
from which we can derive the location of the occupation 
domains. The contrast variation method determines the 
partial structure factor by using several samples that 
have the same structure but consist of atoms with 
different scattering amplitudes. This can be achieved by 
neutron scattering with several samples by isomorphous 
replacement of isotopes or the anomalous-dispersion 
effects of X-rays using the absorption edge of constituent 
atoms. Then, the Patterson map gives the initial model 
of quasicrystal structures. The direct method gives the 
phases of observed reflections. On the other hand, in 
the trial-and-error method, an initial model has to be 
obtained from the investigation of quasiperiodic tilings 
and their decorations and/or electron microscopy. In par- 
ticular, for polyhedral quasicrystals, electron microscopy 
gives important information for modeling. All methods 
have several drawbacks, so that they are complementary 
to each other. 

14.1. Patterson method 

The Patterson map of quasicrystals can easily be 
obtained from the Fourier transformation of the observed 
intensities which are indexed by nD Miller indices. 

P(r) = (1/V)  ~j-~lF,,b~(h)12exp(-27rih.r), (63) 
h 

where V is the volume of the unit cell and r and h 
are the 7~D positional and reciprocal-lattice vectors. This 

- - I n  

Fig. 34. A periodic pattern with a mirror plane and a rectangular lattice. 
The unit cell is shown as dotted lines. 

Fig. 35. The Patterson map of i-AI-Pd-Mn. Periods along two rivefold 
directions are shown by dotted lines. Short and long periods 
correspond to (100000) and (01 III1). 
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was applied to the analyses of i-AI-Cu-Fe (Gratias, 
Cahn & Mozer, 1988a,b) and d-AI-Mn (Steurer, 1989). 
Examples of the Patterson maps for i-AI-Pd-Mn having 
the face-centered icosahedral lattice are shown in Fig. 35 
(Yamamoto, 1995). This is a self-convolution product of 
the density /,(r) in I~D space: 

P( r )  = (l /N).fp(x)fl(r + x) dx. (64) 

Therefore, the deduction of the electron density p(r) is 
not an easy task but we can infer the location of large 
occupation domains and their rough size. From Fig. 35, 
we can consider that possible positions of the occupa- 
tion domains are at (0, 0, 0, 0, 0, 0), (1,0, 0, 0, 0, 0)/2, 
(1 ,1 ,1 ,1 ,1 ,1 ) /4  and (3 ,1 ,1 ,1 ,1 ,1 ) /4  of the face- 
centered icosahedral lattice. The deviation of the 
occupation domain from the isotropic occupation domain 
(sphere) was observed in i-A1-Cu-Fe by Cornier- 
Quiquandon, Quivy, Lefebvre, Elkaim, Heger, Katz & 
Gratias (1991). It is, however, not easy to consider the 
distribution of constituent atoms. For this purpose, the 
contrast variation method explained below is efficient. 

14.2. Contrast variation method 
This can be used with either neutron scattering or 

anomalous X-ray diffraction to separate partial structure 
factors from the total structure factor. Let the change 
of neutron scattering lengths or atomic scattering factors 
be possible. The diffraction intensity of a binary alloy 
is given by 

I ( h ' )  = Iba(h")I:~(h') + t , . (h '  )Fi3(h' )12, (65) 

where b.t/:_~(h' ) is the neutron scattering length or X-ray 
scattering factor at the diffraction vector h '  for an A/B 
atom and I'Ia/B is the corresponding normalized partial 
structure factor. The right-hand side of (65) becomes 

t,~tlt(,I-~ + b~l&'.[-~ + 2b ~b~IF~IIFz31 c o s ~ a  . ,  (66) 

where A,:azj is the phase difference between b~_ t and 
k'~. There are three unknown variables, I~1, IFBI 
and ,3~_tz 3 in the above expression. Thus, if we use 
three different sets of b a and I,z~, they are determined. 
I I, h l or I1'~1 gives the partial Patterson map, which 
is a self-convolution product of the density function 
for one element. This makes the interpretation of the 
map much easier than that of the usual Patterson map. 
This was applied to the structure analyses of i-A1--Cu-Li 
and i-A1-Mn by neutron scattering (Janot, de Boissieu, 
Dubois & Pannetier, 1989; Janot, Pannetier, Dubois & 
Boissieu, 1989). Similarly, in the ternary alloys, six 
unknown quantities, IFal, IFBI, IFcl, A:a~ ,  ZX:Bc 
and A~A <, can be determined by six samples. 

14.3. Direct method 
The direct method has been applied to i-AI-Cu-Li 

by Fu, Li & Fan (1993) to check its efficiency in the 
quasicrystal structure determination. The quasicrystal is 
a crystal in nD space but the electron density is extended 
along the internal space since the occupation domain is 
parallel to the internal space. This is essentially different 
from a normal crystal and its direct extension to nD 
space, where the atom is spherically symmetric in nD 
space. The difference can be removed if we assume the 
occupation domains for all the atoms in nD space are the 
same and have the point symmetry of the lattice. Then, 
from (48), the structure factor is given by 

F ( h )  = t ; i , (h)/ ' (h) ,  (67) 

where 

/ ' ( h )  = ~ E .f'(h")p" exp[-B'(h')2/4] 
. {R l t} , '  

x exp[27rih. (Rr"  + t)]. (68) 

Since the atomic scattering factors . f ' ( h '  ) extend only 
over the external space and the b function along the 
internal space, I)(h) is quite similar to that of the usual 
structure factor. Thus, the usual direct-method phasing 
by the random starting tangent refinement procedure can 
be applied to I_b'(h){ = (b'(h)l/JG,(h)l (Yao, 1981). As 
the common occupation domain F0(h ), the spherically 
symmetric occupation domain with an appropriate radius 
is employed. It was estimated from the origin peak in 
the Patterson map in nD space, which is spread in the 
internal space (Fu, Li & Fan, 1993). The radius used is 
nearly equal to that of the sphere with the volume of the 
rhombic triacontahedron for the 3D Penrose tiling. The 
direct-method phasing process gave peaks at the origin, 
edge center and body center in the 6D icosahedral lattice 
as expected. The next step is to calculate F ( h )  with (67) 
since F ( h )  is now obtained and the factor ~ ( h )  is given 
by (50). Finally, the electron density p(r) in 6D space 
is obtained by the inverse Fourier transformation of the 
structure factor F(h) :  

fl(r) = ( l /V )  ~ , F ( h ) e x p ( - 2 7 r h . r ) .  (69) 
h 

Thus, we can obtain the information of the occupation 
domain. In real quasicrystals as in i-A1-Cu-Li, the sizes 
of the occupation domains at the origin, edge center 
and body center are different and, in particular, the 
occupation domain at the edge center has no icosahedral 
symmetry. Therefore, the use of the common occupation 
domain with spherical symmetry is a rough approxima- 
tion. Nevertheless, the procedure worked well. It seems 
to be insensitive to the choice of the common occupation 
domain. A similar procedure is expected to be applicable 
to the polygonal quasicrystals with the use of a circular 
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occupation domain instead of a spherical one for all 
atoms. 

i4.4. Trial-and-error method 

The trial-and-error method is based on structure- 
factor calculations and the least-squares method. This 
is essentially the refinement method. Therefore, we need 
an initial model obtained from theoretical considerations 
or the methods mentioned above. We discuss the theo- 
retical methods in the following. The basic model is 
the quasiperiodic tiling. Duneau & Katz (1985) showed 
that the 3D Penrose tiling gives the diffraction patterns 
similar to those of the first found quasicrystal i-A1-Mn 
and Yamamoto & Ishihara (1988) clarified that the 
diffraction patterns of d-AI-Mn are also similar to those 
of the 2D Penrose tiling and gave a possible model 
explaining the diffraction intensity and the extinction 
rules due to the space group PlOs/mmc. These models 
however gave too low point densities. In order to obtain 
a realistic density, decoration of the quasiperiodic filings 
is necessary, which is the subject of the next section. 
The first realistic models of icosahedral and decagonal 
quasicrystals were derived for i-A1-Mn and d-AI-Co-Ni 
(Yamamoto & Hiraga, 1988; Yamamoto, Kato, Shibuya 
& Takeuchi, 1990) by the trial-and-error method. The 
models are based on the theoretical consideration of 
crystalline approximants and the relation between the 
approximants and quasicrystal structures under a linear 
phason strain. The structure models were constructed so 
as to give the crystalline approximants of a -AI-Mn and 
Al~3Fe 4. In both cases, the atom clusters are considered 
from the analogy of the crystalline approximants. They 
are observed in many quasicrystals and seem to be 
important building Units for all quasicrystals. Thus, the 
structure model is not so simple in contrast to the first 
success of the quasiperiodic tiling. 

15. Decoration of quasiperiodic tilings 

So far, we have discussed general problems of quasi- 
crystals and quasiperiodic tilings as the simplest models 
of quasicrystal structures. Simple filings discussed in §§5 
and 6 do not, however, give real quasicrystal structures 
but their vertices appear as the center of the cluster. 
The success of the 3D Penrose tiling for icosahedral 
quasicrystals was only qualitative (Yamamoto & Hiraga, 
1988). It could not explain the density of the real 
quasicrystal. Therefore, in the next approximation, the 
density has to be explained. This can be done by 
considering the decoration of quasiperiodic filings. A 
simple structure obtained from the 3D Penrose tiling 
was successful for i-AI-Cu-Li, where the edge-center 
atom and two atoms on the body diagonal of the acute 
rhombohedron (two body-diagonal positions) were intro- 
duced (Shen, Poon, Dmowski, Egami & Shiflet, 1987). 
As an example of such a decoration, we start with simple 
decorations of the octagonal Penrose tiling since this is 

the simplest case. As shown in §§5 and 12, the octagonal 
Penrose tiling is obtained from the octagonal occupation 
domain with the edge length a'. When the occupation 
domains at the lattice points r and r + dj  intersect the 
external space, atoms appear at r ~ and r e + d~. Then the 
external space intersects the union of their occupation 
domains: V(r~.) I,.J V(r  i + d~). The edge-center atom 
at r e +  d~/2  is obtained from the union of the two 
occupation domains at r + d j~2. This is a squashed 
hexagon with the edge length a '  (Fig. 36a). Similarly, 
the face center position of the rhombus (square) with 
edges d~ and d~ (d~ and d~) is obtained from the union 
V(r i ) ( . JV(r  i + d l )  [,.J V( r  ~ + d~) [,.J V( r  i + d  I + d ~ )  at 
r +  (d I + d 2 ) / 2 .  These are a rhombus with an angle 7r/4 
and a square with the edge length a'  (Figs. 36b,c). The 
tiling with atoms at all edge and face centers is shown 
in Fig. 37. 

Similar calculations can be made for the 3D Penrose 
tiling. From the crystalline approximants of i-AI-Cu-Li, 
it is expected that atoms are situated at the edge-center 
and two body-diagonal positions of the acute rhombo- 
hedron, which divide the diagonal into 7 .-2 : 7.-3 : 7_-2 
(Henley & Elser, 1986). From a similar consideration, 
the edge-center position is given by the occupation 
domain at the edge center d . / 2 ,  which is a union of two 
triacontahedral occupation d~omains at the origin and d~.. 

(a) 

(b) 

(c) 

Fig. 36. The occupation domains for (a) edge centers, and face centers 
of (b) rhombi and (c) squares. 
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Its shape is given by the rhombic icosahedron with edge 
length a ~ (Fig. 23d). The occupation domain related to 
the diagonal two positions is the same in shape as that 
of the body-center position of the acute rhombohedron 
but is shifted. The union of the eight triacontahedra at 
ri, ri ÷ d!: ( j  l, 2, ~ r' d i ' - -  + ,. + d k [ ( j ,  k) - ( 1 ,  2 ) ,  

(2, 3), (3, ])] and r i +  '-'1 + d~ -~ d~ is the acute rhom- 
bohedron (Fig. 23a). [This agrees with the union of four 

i rhombic triacontahedra at r ~ and r i + dj ( j  - 1, 2, 3).] 

• • • • • • • • • • • • • • • • • • • • 

• D 

• D 

• D 

• D 

• D 

• D 

3 If this is located at ~ j = ~  j /  the body center r + d 2, an 
atom appears at the body center of the acute rhombohe- 

e 3 e dron r + 3 -" . .  d . / 2  In order to obtain atoms at the 
z . . . a 3 - -  t 3 ~  • 

two body-diagonal positions, the occupation domain has 
to be shifted by 4_,1__3 ~3=~  d~/2  along the external 
space. When all the body-diagonal positions with 20 
different orientations are considered, the resulting oc- 
cupation domains construct a dodecahedral star shown 
in Fig. 23 ( f )  (Yamamoto, 1990). In i-A1-Cu-Li, the 
vertex and edge-center positions are occupied mainly 
by A1 and Cu statistically, and the two body-diagonal 
positions by Li. This was the first success of simple 
decoration models for quasicrystals (Elswijk, de Hosson, 
van Smaalen & de Boer, 1988). A detailed analysis gave 
a slightly different model, which is the cluster model 
discussed below. 

• D 

• D 

• D 

I • 

4 D 

4 • 

4 • 

4 • 

4 • 

4 • 

4 • 

4 • 

• • • • • • • • • • • • • • • • • • • • 

Fig. 37. The octagonal pattern decorated with edge-center and face- 
center atoms. 

Fig. 38. The occupation domain of a cluster model of  Li in i-AI-Cu-Li 
at the body center of  the icosahedral lattice. 
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(c) 
Fig. 39. (a), (b) The occupation domains of  (c) the Burkov 

model for d-A1-Cu-Co.  The domains (a) and (b) are located at 
(1, 1, 1, 1, 5z)/5 and (2, 2, 2, 2, 5z)/5 in the 5D decagonal lattice. 
The atoms derived from small occupation domains in (a) and (b) 
are represented by the same color in (c). 
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16. Cluster models of quasicrystais 

Cluster models for quasicrystals are inferred from the 
structure of crystalline approximants, which consists 
of atom clusters with high symmetries. In fact, the 
diffraction intensity distribution of the approximant of 
i-A1-Mn was shown to be similar to that of the i-A1-Mn 
quasicrystal (Elser & Henley, 1985). Clearer evidence is 
obtained from high-resolution electron microscopy for 
polyhedral quasicrystals. Several clusters were observed 
in decagonal phases (Hiraga, 1995). The symmetry of the 
atom cluster is closely related to that of quasicrystals. 
For the first quasicrystal found, i-A1-Mn, the corre- 
sponding approximant is a-A1-Mn-Si, which consists 
of icosahedral clusters (A1/Si)42Mn12. In the decagonal 
quasicrystals d-A1-Ni-Co and d-A1-Mn (d-A1-Pd-Mn), 
A111Co 4 (All3Fe4) and A13Mn may be good approxi- 

mants (Li, Shi, Ma, Ma & Kuo, 1995; Brack, 1955; 
Hiraga, Kaneko, Matsuo & Hashimoto, 1993). They 
have atom clusters with decagonal symmetry. A typical 
case is shown in Fig. 40 (Hiraga & Sun, 1993). 

In the cluster model, we consider first the location 
of the cluster center. For the earliest found icosahedral 
quasicrystals i-A1-Cu-Li and i-A1-Mn, it was assumed 
that they are located at the 12-fold vertices of the 3D 
Penrose tiling (Yamamoto & Hiraga, 1988; Yamamoto, 
1992b). We consider a cluster model of i-A1-Cu-Li. 
From the argument in the previous section, the oc- 
cupation domain of the cluster center is the common 
part of 13 rhombic triacontahedra located at the origin 
and 12 vertices on the fivefold axes, which is the 
rhombic triacontahedron with the edge length " r - 2 a  ~. 

The frequency of the cluster center is proportional to 
a small triacontahedron, which is smaller than that of 

Fig. 40. The HRTEM image of d-AI-Pd-Mn and the distribution of the atom clusters (inserted). (Courtesy of K. Hiraga.) The shortest 
intercluster distance is about 20/~. 



AKIJI YAMAMOTO 553 

the vertices of the 3D Penrose tiling by the factor T -6. 
The first shell of the cluster consists of 12 AI/Cu atoms 
at the edge centers of 12 bonds in the 3D Penrose 
tiling. They come from two small triacontahedra at 
dj/2 T d;;/2 within the rhombic icosahedra centered at 
d ) / 2  sinc~ the positions of the edge-center atoms + d ~ / 2  
are equivalent to d j / 2  :t= di/2. The second shell con- 
sists of 12 vertices and 20 a~toms on the body diagonal 
of the acute rhombohedron, which divide the diagonal 
in the ratio 7- -2 : 7- -~. They are created by the small 
triacontahedra at (1, 1, 1, 1, 1, ]-)'~/2 -- (1, 1, 1, i, 1, 1)/2 

_ - -  . 

- (1, 1, !, 1, 1, 1) ' /2  and 19 equivalent positions. These 
are the small triacontahedra seen in Fig. 38. Most parts of 
the triacontahedra are in the dodecahedral star but small 
parts are outshot. This means that the simple decoration 
discussed in the previous sections gives the atom cluster 
in most 12-fold vertices but some of them are not 
complete clusters. Thus, the cluster model modifies the 
simple decoration model slightly (Yamamoto, 1992b). In 
this model, there exist linking atoms connecting clusters. 

On the other hand, a model of d-A1-Ni-Co proposed 
by Burkov (1991) does not include linking atoms but two 
kinds of atom clusters. The location of the cluster centers 
is related to the binary tiling given by Lancon & Billard 
(1988) and Zobetz (1992), where the tiling is generated 
by three occupation domains as mentioned in §5, two 
of which are independent (Fig. 20). The occupation 
domains are located at the same positions as those of 
the binary tiling but have complicated shapes (Figs. 39a 
and b). In order to classify the atoms depending on the 
different parts of the occupation domains, the structure 
in 2D space is colored (Fig. 39c). This model gives 
intercluster distances of about 12 A. 

In d-A1-Pd-Mn, the cluster arrangement is quite sim- 
ilar to that of the model by Burkov but the intercluster 
distances are about 20 A, that is 7- times longer than that 
of the Burkov model of d-Al-Ni-Co (Hiraga, Lincoln, 
& Sun, 1991). This also has two kinds of cluster but the 
cluster size is T times larger. The structure of the cluster 
is deduced from high-resolution electron microscopy and 
the structure of the approximant AI~Mn (Hiraga & Sun, 
1993; Li, Shi, & Kuo, 1992; Hiraga, Kaneko, Matsuo 
& Hashimoto, 1993). Fig. 40 shows the HRTEM image 
and the cluster arrangement of d-Al-Pd-Mn. It should 
be noted that the large clusters with about 20 ,~ diameter 
are arranged quasiperiodically, the centers of which are 
created by the decagon with the corner vector T-3e'i 
(t~ _~ 2.7,~). Since this is smaller than that of the 
binary tiling with the edge length of ]el] by the factor 
~--~, the intercluster distance is T 3 times larger than 
the edge length of the binary tiling, 2~/51/2. A model 
that has similar clusters was proposed by Yamamoto 
(1993a) based on single-crystal X-ray analysis but the 
structure of the cluster is slightly different. Its large 
occupation domains are shown in Fig. 41. The shape 
of the small occupation domain is similar to that of 
the Burkov model but the size is smaller than that of 

the latter by the factor 7- -~ because the intercluster 
distance is about 20,~. The occupation domains lead to 
the structure shown in Figs. 41(e) and ( f )  (Yamamoto, 
1993a). Recently, it was shown that d-AI-Ni-Co shows 
a superstructure (Edagawa, Ichihara, Suzuki & Takeuchi, 
1992; Edagawa, Tamura, Suzuki & Takeuchi, 1995). The 
X-ray analysis of d-A1-Ni-Co has been done only for 
the average structure (Steurer, Haibach, Zhang, Kek & 
L~ick, 1993). Therefore, the result of the X-ray analysis 
has to be interpreted carefully. 

A cluster model of i-AI-Pd-Mn was given by 
Yamamoto, Sato, Kato, Tsai & Masumoto (1994) 
based on single-crystal X-ray diffraction. This has three 
complicated occupation domains, which are located at 
(0,0,0,  0,0,0) ,  ( 1 , 0 , 0 , 0 , 0 , 0 ) / 2  and (3, 1, 1, 1, 1, 1)/4. 
Similar to the model for decagonal quasicrystals 
mentioned above, they consist of small rhombic 
triacontahedra, small dodecahedral stars and small 
rhombic icosahedra, which are smaller than those of 
the simple decoration model of i-AI-Cu-Li by a factor 
of 7- -~. This is based on the decoration of the 3D 
Penrose tiling with the edge length 7-3~t. 

The models of d-AI-Pd-Mn and i-A1-Pd-Mn are 
refined by introducing a shift from ideal-atom positions. 
This is quite reasonable because the local environments 
of atoms are in general different from each other. Then 
the position of each small occupation domain can be 
shifted along the external space. Such a refinement 
method will be discussed in the next section. 

Several different symmetries are found in decagonal 
quasicrystals with different periods. The space groups 
found so far are" PlOs/mmc for d-AI7oN!IsCOI5 
(c -- 4.0807A), d-AI65Cu20CoI5 ° (c --  4.1481 A) and 
d-A170.sMn165Pd13 (c = 12.4 A); PlO/mmm for 
d-AlvoCo2oNilo (c -- 4.08,~)" and P10m2 for 
d-A17oNilsFe15 (c "~ 17,4,) (Steurer, Haibach, Zhang, 
Kek & LiJck, 1993; Steurer & Kuo, 1990; Yamamoto 
& Ishihara, 1988; Beeli, Nissen & Robadey, 1991" 
Yamamoto, 1993a; Saito, Tanaka, Tsai, Inoue & 
Masumoto, 1992). In d-AlvoNilsCoL5 or d-A1-Co, there 
are diffuse streaks perpendicular to the tenfold axis 
indicating a doubled (~  8/~) period and also satellite 
reflections suggesting a superstructure in 5D space. The 
structure analyses made so far neglect such complexity. 
On the other hand, d-Alv0MnL7Pdl3 (c = 12.04/~) shows 
no diffuse streaks and no satellites. 

We discuss the cluster model of d-Alv0MnlvPdl3 in 
more detail in order to show a modeling of a 5D structure 
with a given space group. From the crystalline approxi- 
mants AI~Mn (Hiraga, Kaneko, Matsuo & Hashimoto, 
1993), we assume that it consists of ten layers at around 
z - +0.25, z - +0.25 4-0.12 and z = +0.25 + 0.19. 
The 105 screw axis and the mirror plane suggest that one 
layer, is on the mirror plane perpendicular to the screw 
axis at z -- 0.25 and the layers at z _> 0 are related 
to those at z _< 0 by the screw axis. Therefore, there 
are three independent layers. Furthermore, its HRTEM 
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image indicates that the arrangement of the cluster 
centers is quite similar to the tiling obtained from the 
decagonal occupation domain for the binary tiling (Fig. 
20b) and that the size of the clusters is about 20 
(Hiraga, Sun, Lincoln & Matsuo, 1993). This gives a 
lattice constant of about 2.8/~ and the cluster centers are 
generated by the decagon with the comer vector 7_-3eli 
(Fig. 41). 

As discussed above, the occupation domains of 
the cluster atoms are obtained from that of the 
center [domain 1 in Fig. 41(a)] by shifting it by 
an appropriate amount along the external space. 
For example, the atoms at e~. = 2a/5t /2  [ c j a l  n t- 
8ja2] from the center are obtained from the small 
occupation domains at e~ from the position of the 
occupation domain of the center. In the present case, 

the occupation domain of the cluster center is at the 
origin. Therefore, the shifted occupation domain for the 
atoms at e ~ appears around - ( 1  1, 1, 1 ,5z) /5  since 
ee _ d e ~--~4 _ l e , ~  _ i '+ dr/5 Therefore, j - j - 2_~t=1 tat/~ = - e j  - ~ - ~ / = 1  • 

this is domain 4 in Fig. 41(b). Similarly, the atoms 
e e e t c .  a re  from the occupation domain at at e 1 q- e 2 

- (2 ,  2, 2, 2, 5z)/5.  In the present case, there is another 
cluster that is located at the center of the pentagon 
formed by the cluster centers. The center is obtained 
from a two rhombic star of the occupation domains 
of the binary tiling by reducing its size by a factor 
7--3 [domain 1 in Fig. 41(c)]. These two are located 
at +(1, 1, 1, 1, z ) / 5  and are related to the tenfold screw 
axis. The atoms around this cluster are also obtained 
by shifting the occupation domain of the cluster (the 
small rhombic star). Such a construction leads to the 

Ca) (b) (c) (d) 
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Fig. 41. (a)-(d) Large occupation domains of (e), ( f )  the cluster model of d-A1-Pd-Mn by Yamamoto (1993b). (a) The domain E located at 
(0, 0, 0, 0, 1/4). (b) The domain D at - (1 /5 ,  1/5, 1/5, 1/5, 1/4). (c) The domain A at (1/5, 1/5, 1/5, 1/5, ,-~ 0.38). (d) the domain B at 
(2/5, 2/5, 2/5, 2/5, ,,~ 0.44). The structures are projected along the tenfold axis within the range (e) 0 < z < 0.5 and ( f )  0.5 < z < 1. 
Atom colors correspond to the occupation domain colors as in Fig. 39. Atoms denoted by circles, triangles, squares and pentagons are 
obtained from the E, D, A and B domains in (e), while they come from other domains in ( f ) ,  which are obtained from E, D, A and B by the 
105 screw axis. Small black, violet and red domains are cited as domains 1, 2 and 4 in the text. 
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occupation domains in Figs. 41(a)-(d) and the structures 
in Figs. 41(e)-(f) .  In order to see the correspondence 
between the small occupation domains and the structure 
in layers perpendicular to the tenfold axis, atoms are 
plotted with the same color. 

As seen above, the cluster model has complicated 
occupation domains but the structure consists of two 
clusters and no linking atoms are present. The atoms 
derived from a small occupation domain have the same 
local configuration. We can therefore expect the same 
temperature factor, the shift from the ideal position and 
the partial occupancies mentioned below to a good ap- 
proximation. In the structure refinement, it is necessary 
to take into account the shift. This naturally leads to the 
refinement method discussed in the next section. 

17. Refinement methods 

The refinement method is used in the trial-and-error 
method or in the last stage of the structure determination. 
This needs a starting model, which is usually obtained 
from the Patterson or partial Patterson or direct methods 
discussed in §14 or the theoretical consideration of the 
structure of crystalline approximants. A rough model can 
easily be obtained from the Patterson method if there 
are a few large occupation domains that are located 
at the special positions. This seems to be true for all 
quasicrystals found so far except for i-Zn-Mg-Y found 
recently, where there may exist many small occupation 
domains (Yamamoto, Matsuo, Yamanoi, Tsai, Hiraga & 
Masumoto, 1995). Then the first task is to determine the 
size of the large occupation domain since the diffraction 
intensity is quite sensitive to its size but not so sensitive 
to its shape (Elser, 1986), provided that an appropriate 
assignment has been done for the occupation of each 
domain by constituent atoms. At this stage, we can use 
spherical occupation domains for icosahedral quasicrys- 
tals and circular ones for polyhedral quasicrystals. The 
radius can be refined by the least-squares method by 
using the analytic expression of their Fourier integrals 
[(49) and (50)]. The partial occupancy of each occu- 
pation domain can also be refined at the same time 
if the occupation domain is occupied by two atoms 
statistically. Then the factor f~,pt, in (48) is replaced 
by [f~(1 - ~ " ) +  f~',~"]p'~, where .~'~ is the partial 
occupancy of the second atom sharing the itth site and 
fl '  and f~ are the atomic scattering factors of the first 
and second atoms. The quasicrystal is usually a ternary 
alloy. If we try to refine the partial occupancies of 
three atoms, the same factor is replaced by the factor 
[f¢'(l - stl ' -  s~ ' )+  f~'.~;' + f~'.s~e~]p '' with two partial 
occupancies s~' and s~ (Yamamoto, Matsuo, Yamanoi, 
Tsai, Hiraga & Masumoto, 1995) but it is impossible 
to refine these two at the same time by using a single 
diffraction data set because of the correlation between 
these two parameters. This is because for a specified 
value of the factor there are many combinations that 

give almost same values. If we use two different sets of 
diffraction data like X-ray and neutron data, it is possible 
to determine s~ and s 2 by the refinement (Yamamoto, 
Kajitani & Morii, 1995). 

After the refinement, we can draw difference Fourier 
maps or the electron-density map by the maximum- 
entropy method (MEM map) to tailor the shape of the oc- 
cupation domains or to divide large occupation domains 
into smaller ones or several shells. In i-A1-Pd-Mn, the 
shell approximation is quite good (Boudard, Boissieu, 
Janot, Heger, Beeli, Nissen, Vincent, Ibberson, Audier 
& Dubois, 1992). In order to refine the shape of the 
occupation domains, the method of Elcoro, Prrez-Mato 
& Madariaga (1994) mentioned in § 10 can be applied, 
where the deviation from the circle or sphere is expanded 
in terms of trigonometric functions or spherical harmon- 
ics and their amplitudes are refined by the least-squares 
method. This was successfully applied to i-A1-Cu-Li. 

It is reasonable to expect a deviation from the ideal 
atom positions, which are obtained from the occupation 
domains at special positions with high symmetries. In 
order to introduce such shifts, it is necessary to subdivide 
the large occupation domain at the special positions into 
smaller ones as mentioned in the previous section. Then 
the center of such occupation domains cannot shift in 
many cases because of the high site symmetry but the 
small domains around it can shift along some direction 
in the external space, since the site symmetry of such 
subdomains is in general lower than that of the central 
domain. For example, the domain E 2 in Fig. 41(a) is 
on the mirror plane including e( and d 5 (the tenfold J. 
axis), so that only a shift in the nurror plane is possible. 
The domain E 2 is on the mirror plane perpendicular 
to the tenfold axis. This inhibits a shift along the d 5 
axis but allows one along e': = (2a/51/2)[cjal + ~ja2]. 

3 . 

On the other hand, the domam A 2 allows a shift along 
both d 5 and e'!. A domain at the general position allows s 
a shift along three independent directions. 

The refinement of the shift based on cluster models 
has been made for d-A1-Pd-Mn and i-AI-Pd-Mn 
(Yamamoto, Matsuo, Yamanoi, Tsai, Hiraga & 
Masumoto, 1995). For both cases, the reduction of 
the weighted R factor (for 1311 and 1137 independent 
reflections) was about 5% compared to ideal models 
where the shift is not taken into account. The maximum 
shift was about 0.3 A,. This means that the the shift is 
important and not negligible. 

18. Maximum-entropy method 

The maximum-entropy method (MEM) is known to 
be efficient in solving normal crystal structures and to 
determine their electron density (Bricogne & Gilmore, 
1990; Sakata & Sato, 1990). Recently, it was applied to 
quasicrystals and its potential for their structure analysis 
was discussed (Steurer, 1991). The MEM for quasicrys- 
tals in 'r~D space necessitates the calculation technique 
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discussed below because it requires a large computer 
memory. For unknown structures, we need to know the 
phases of several structure factors. The electron density 
p(r) at r in nD space is calculated from the prior density 
7-(r) repeatedly by 

p(r) = 7-(r) exp[Ap(r)] (70) 

with 

Ap(r) = A Y~[Fobs(h ) - Fcal(h)] 
h 

X exp(-27rih-  r ) /~2(h) ,  (71) 

where A and 1/a2(h) are the Lagrange multiplier and 
the weights of the reflections. The phase of a calculated 
structure factor Fca I (h) is used for an observed structure 
factor Fobs(h). The calculated structure factor is given 
by the Fourier transform of "r(r): 

Fcal(h ) -- V ~ T(r) exp(2~rih • r), (72) r 
where V is the unit-cell volume. Initial density -r(r) and 
structure factors Fcal(h ) are obtained by the structure 
refinement based on a model. Phases of several strongest 
reflections are fixed as known phases in the iteration. 
The initial density used in the MEM is obtained, for ex- 
ample, from the inverse Fourier transform of Fob.~(h ) for 
independent reflections and equivalent ones generated by 
symmetry operations, after truncating its negative parts 
at a small positive value because MEM requires initial 
electron density that is positive everywhere. Yamamoto, 
Weber, Sato, Kato, Ohshima, Tsai, Niikura, Hiraga, 
Inoue & Masumoto (1996) proposed a slightly modified 
method with faster convergence, where the following 
expression is employed instead of (70): 

p ( r ) -  v ( r ) e x p ( A p ( r ) / { [ v ( r ) ] ' / 2  + e}),  (73) 

where e is a small positive number. 
One of the merits of this method is that it provides 

an electron density that gives a small R factor and is 
positive everywhere. Since this method estimates the 
intensities of many unobserved reflections that have 
large components of diffraction vectors in the internal 
space, the boundary of the occupation domain is very 
sharp compared to that of Fourier maps. The peak 
height of high electron-density regions is also higher. 
Thus, we can easily see the electron density giving 
small R factors. This is suitable to tailor the occupation 
domains or to modify models. There exists one problem 
in the calculation of MEM maps. This method needs a 
large computer memory since it calculates the electron 
density at many grid points in the unit cell of nD 
space. The nD space necessitates more memory with 
increasing n, so that the calculations of MEM maps 

for the icosahedral lattice gives serious problems. The 
situation is however improved by the application of simi- 
larity transformations. The MEM map of i-AI-Pd-Mn is 
shown in Fig. 42(a) (Yamamoto, 1995). This map uses 
1137 independent reflections. It is noted that the cut- 
off of the electron density (boundary of the occupation 
domain) along the internal space is sharp compared to 
the Fourier map in Fig. 42(b). 

19. Superstructures in quasicrystals 
A superstructure in 5D space was found recently in 
d-AlToNitsC°15 (Edagawa, Ichihara, Suzuki & Takeuchi, 
1992). This is the superstructure discussed by Ishihara & 
Yamamoto (1988). In general, the quasiperiodic tilings 

!1" 

i 

ii i "! 
i "'"b 

1!" %%% 

(a) 

(b) 
Fig. 42. The electron-density maps of i-AI-Pd-Mn obtained from (a) 

the maximum-entropy method and (b) Fourier synthesis. 
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given by the PM can be regarded as superstructures 
except for the cases where the tilings are obtained from 
the nD space with minimum dimension by the PM. The 
exceptional cases are the octagonal Penrose tiling in the 
4D octagonal lattice and the 3D Pem'ose tiling in the 6D 
icosahedral lattice. In these cases, it should be noted 
that the tiling is obtained from only one occupation 
domain at the origin. On the other hand, in the other 
cases, there are several occupation domains causing the 
superstructure. The tilings listed in Table 14 can be 
regarded as superstructures of the tilings given in Table 
13. 

For example, the rhombic Penrose tiling or binary 
tiling in the decagonal lattice in 4D space are regarded as 
the superstructure of the pentagonal Penrose tiling. This 
is because the occupation domains of the superstructure 
are located at the lattice points of a smaller cell but their 
shape and size are different. Therefore, if we place all 
the lattice points of the smaller cell within the unit cell 
of the superstructure, we obtain a tiling with a smaller 
period. In fact, if we place the same decagonal occu- 
pation domains at the five special positions (i, i, i, i ) /5  
(i -- 0, 1, 2, 3, 4) in a 4D decagonal lattice in contrast 
to different pentagons in the Penrose tiling, we get 
the pentagonal Penrose tiling. Then, the five positions 
are translationally equivalent with the decagonal lattice 
with l /5  cell volume. The diffraction patterns of the 
pentagonal Penrose and rhombic Penrose tilings are 
shown by Hiraga, Sun & Yamamoto (1994). Similarly, 
the dodecagonal Penrose tiling is a superstructure of 
the Stampfli tiling. In this case, the unit-cell volume of 
the former is nine times larger than that of the latter 
(Yamamoto, 1995). 

In the Socolar 3D tiling, there are two occupation 
domains at (1, 1, 1, 1, 1, 1)/4 and (3, 1, 1, 1, 1, 1)/4 of the 
face-centered icosahedral lattice (Fig. 24) as mentioned 
in §6. This is equivalent to the structure with the same 
occupation domains at the origin and (1, 0, 0, 0, 0, 0)/2 
of the same face-centered lattice, since the positions 

_ _  

are the special positions with site symmetry m35 and, 
therefore, the latter is obtained from the former by 
just changing the origin. Thus, if we place the same 
occupation domains at these two positions and equiva- 
lent positions to them by the centering translations of 
the face-centered lattice, we obtain a structure with the 
primitive icosahedral lattice with a half lattice constant. 
One such structure is the 3D Penrose tiling, where the 
occupation domain is a rhombic triacontahedron. 

In a real superstructure like d-Al70Ni~sCols, the num- 
ber of occupation domains may be five times larger than 
that of the normal structure (Hiraga, Sun & Yamamoto, 
1994). Some occupation domains are located at positions 
with low site symmetry. This increases the number of 
parameters and makes the structure analysis difficult. 
Hiraga, Lincoln & Sun (1991) proposed a model for 
the superstructure based on HRTEM images. However, 
no analysis has been done based on single-crystal X-ray 

data, though the intensities of satellite reflections can be 
collected, since there are strong satellite reflections and 
high-quality single crystals are available. 

It is known that there are several superstructures 
with the face-centered icosahedral lattice with a lattice 
constant of about 9.6 or 10/~. They are classified 
into two types, which are called the Mackay type 
and Frank-Kasper type. Examples of the former are 
i-AI-Cu-Fe, i-A1-Pd-Mn and of the latter i-AI-Mg-Li 
and i-Zn-Mg-Y. For the former, the large occupation 
domains are located at (0, 0, 0, 0, 0, 0), (1,0, 0, 0, 0, 0)/2, 
(3, 1, 1, 1, 1, 1)/4 (Cornier-Quiquandon, Quivy, 
Lefebvre, Elkaim, Heger, Katz & Gratias, 1991; 
Yamamoto, Sato, Kato, Tsai & Masumoto, 1994). 
On the other hand, in i-Zn-Mg-Y, they are at 
(0, 0,0,0,  0,0), (1 ,0 ,0 ,0 ,0 ,0 ) /2 ,  (1, l, l, 1, 1, 1)/4 
and (3, l, I, l, 1, 1)/4 but the shifts from the ideal 
positions seem to be very large compared with the 
former (Yamamoto, Weber, Sato, Kato, Ohshima, Tsai, 
Niikura, Hiraga, Inoue & Masumoto, 1996). 

The author thanks S. Weber, NIRIM, for drawing 
Figs. 39 and 41. 
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